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Abstract— Hyperspectral (HS) video is able to capture abun-
dant spectral, spatial, and temporal information about objects,
which overcomes the limitations of common red-green-blue
(RGB) video in complex scenarios such as similar appearances
and background clutters (BCs). However, most trackers apply
hand-crafted features extracted from manually selected bands
instead of deep features for object representations due to limited
HS data and the band gap problem. Each HS image consists of
many bands, and it is challenging to fully interact with the band
information while maintaining tracking speed. To this end, this
article proposes a novel end-to-end spectral awareness interaction
network with a dynamic template (SPIRIT) for HS video object
tracking. First, a spectral awareness module (SAM) is proposed
to learn band contributions with consideration of nonlinear and
global interactions between HS bands. It can also cooperate
with the feature extraction module pretrained with RGB data to
attenuate the band gap and data-hungry. Second, an interaction
module (IM) is proposed to achieve inter and intraband feature
interactions to enhance tracking performance while improving
efficiency. Furthermore, the proposed method contains a novel
update module (UM) that evaluates the tracking confidence of the
current state to adapt to object changes and attenuate tracking
drifts. Extensive experiments demonstrate the superiority of our
approach compared to state-of-the-arts (SOTAs) while meeting
real-time demands.

Index Terms— Dynamic template, hyperspectral (HS) object
tracking, information interaction, spectral awareness.

I. INTRODUCTION

VISUAL object tracking is an exciting research direc-
tion with a wide range of applications in autonomous

driving, human-computer interaction, and augmented real-
ity [1]. Given the initial state of an object, the objective is
to locate its position and range in subsequent frames [2].
Most existing works [3], [4], [5], [6] are specialized for
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red-green-blue (RGB) video object tracking, which encounter
difficulties in complex scenarios such as background clutters
(BCs) and similar appearance [7], [8]. This is because the
RGB image only contains three bands, which limits the
tracker’s ability in real-world scenes. With advancements
in sensor technology, it is possible to obtain hyperspectral
(HS) video that can record spectral, spatial, and temporal
information [9], [10]. Especially, the rich spectral reflectance
enables the tracker’s potential material identification capability
and provides more discriminative cues for object tracking
in challenging cases [11]. However, achieving effective and
efficient HS object tracking performance faces several key
challenges, as follows:

1) Data Hungry: Deep learning techniques typically require
a large number of training samples that are insufficient
due to the sparsity of available HS samples [8]. This
limitation makes it challenging to train accurate and
generalized HS tracking models.

2) Band Gap: The number of bands in HS and RGB images
does not coincide, which prevents directly unlocking the
potential of the RGB model [7].

3) Huge Volume: HS video processing encounters high
computational costs due to the existence of many narrow
bands with high spectral correlation in each HS image.

4) Arbitrary Change: The appearance of the object often
changes arbitrarily during tracking [12], and the lack
of effective methods for adapting to these changes can
leave trackers far from state-of-the-art (SOTA).

HS trackers typically rely on robust features to distinguish
objects from the background. Some HS trackers, such as [13],
[14], and [15] use hand-crafted features, while the discrimina-
tive capability of these features is limited compared to deep
features learned from HS datasets. Moreover, hand-crafted
features may not generalize well to arbitrary types of objects.
Recent advances in RGB data processing have demonstrated
the effectiveness of deep networks [4], [16], [17], [18], [19],
[20]. Considering the data-hungry, it is challenging to train
an HS tracking network due to the sparse training samples.
For this reason, large-scale datasets in the RGB tracking field
such as GOT-10K [21], TrackingNet [22], and LaSOT [23] can
be reused to train HS networks [8]. Nevertheless, bridging
the gap between pretrained RGB models and HS networks
is demanding due to the different number of bands in RGB
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and HS images [7]. To attenuate this issue, some methods
have been proposed to convert the HS image to a three-band
image and perform subsequent tasks. This can be achieved by
selecting three bands directly or using dimension-reduction
techniques to obtain a false-color image, such as [24], [25],
and [26].

However, using only three bands can lead to a loss of
spectral information. Therefore, it is considered to either
repeat each band three times or group adjacent three bands
to generate multiple false-color images for feeding into a
pretrained RGB network, which suffers from data redundancy
and violates the fact that the information in red, green, and
blue channels is usually inconsistent in read world. In addition,
not all bands contribute equally to the downstream tracking
task, and treating them equally can lead to suboptimal perfor-
mance [7]. Recent works, such as SEE-Net [7], BAE-Net [27],
SST-Net [28], and BRRF-Net [29], have been developed and
demonstrated excellent performance. Some of these trackers,
such as SST-Net [28] and BRRF-Net [29], directly apply
average ensemble learning to fuse weak tracking results or
response maps, which may cause track drifts due to equalizing
different false-color images. While the SEE-Net [7] has shown
competitive performance in HS tracking by dynamically aggre-
gating weak results based on the importance of false-color
images. However, the efficiency of the average ensemble learn-
ing fashion could be limited due to the need to predict multiple
weak tracking results in each inference session. Moreover,
to adapt to object changes, some effective strategies, such
as [7], [12], [28], [30], and [31], have been proposed. For
example, SiamF [30] incorporates an online material classifier
to consider object changes, increasing tracking robustness.
The template in Siamese trackers is typically initialized in
the first frame and is kept fixed or slightly updated for the
rest of the HS video. This can lead to tracking drift over
time, especially when there are frequent appearance changes.
Therefore, updating the template is essential for maintaining
accurate HS tracking results [12].

Based on the above analysis, it can be found that most HS
trackers employ hand-crafted features captured from manually
selected bands for representing HS objects, which may limit
the robustness and automaticity of algorithms. In particular,
each image in HS video consists of many bands, and it is
always challenging to fully interact with the band information
while maintaining a real-time running speed. Additionally,
the lack of strategies to handle HS object changes may also
elevate the risk of tracking drifts. In this article, we propose
an efficient end-to-end network called the spectral awareness
interaction network with a dynamic template (SPIRIT) for
HS object tracking. SPIRIT consists of five modules: spectral
awareness module (SAM), feature extraction module, inter-
action module (IM), prediction module, and update module
(UM). To handle the band gap between HS and RGB images,
we propose a SAM that learns the relationship between bands
to evaluate their contributions to downstream tasks. This
module accounts for nonlinear and global interactions between
spectral bands from the perspective of spectral reconstruction.
Guided by the band contributions, the HS image is adap-
tively divided into multiple false-color images with different

contributions and low correlation. These images are then fed
to the feature extraction module to obtain a deep visual
representation. To attenuate the data-hungry issue and fully
exploit pretrained RGB models, the feature extraction module
in a transferred tracking network pretrained with RGB data
is utilized to construct our HS tracker. The SAM and feature
extraction module can adaptively extract deep features of HS
images while retaining the discriminative capability learned
from massive RGB data. To acquire inter and intraband inter-
action (IBI) information and maintain high efficiency, a novel
IM is proposed. More concretely, it first performs the interband
feature interaction, and an IBI network is then proposed to
learn IBI information. The learned inter and intraband features
are fused and sent to the prediction module for localization.
Moreover, we integrate a UM into the SPIRIT, enabling us
to acquire spectral, spatial, and temporal information to adapt
to object changes. The main contributions are summarized as
follows:

1) A SAM is proposed to learn the band contributions
with consideration of nonlinear and global interactions
between HS bands. The SAM cooperates with the fea-
ture extraction module pretrained with RGB data to
attenuate the band gap and data-hungry.

2) An IM is proposed for achieving inter and intraband
feature interactions to improve tracking accuracy while
ensuring efficiency. Furthermore, our proposed approach
includes a novel UM that evaluates the HS tracking
confidence of the current state to adapt to object changes
to attenuate tracking drifts.

Comprehensive comparisons and intensive analyses are per-
formed to demonstrate the superiority of the proposed SPIRIT
method in terms of tracking effectiveness and efficiency,
as shown in Fig. 1. The rest of this article is organized as
follows. Section II reviews the related work including RGB
trackers and HS trackers. The proposed approach is introduced
in Section III. Experimental results and analysis are presented
in Section IV. In Section V, we conclude the article and
summarize the contributions.

II. RELATED WORK

HS video object tracking shows great potential in compen-
sating for the limitations of current RGB trackers in complex
scenarios such as BC and similar appearances. This section
provides an overview of related research works on both RGB
and HS trackers.

A. Visual Object Tracking in RGB Videos

In general, visual trackers can be classified into two
main categories: generative paradigm and discriminative
paradigm [32]. The generative paradigm involves constructing
a model manually to represent the object and then finding a
region that is similar to the description of the generative model
by classifying the signal and minimizing the objective loss.
The accuracy and speed of trackers are directly affected by
object representation models, such as kernel trick [33], sparse
representation [34], and Gaussian mixed model [35].

In the discriminative paradigm, the correlation filter and
the Siamese network are two popular examples [2]. Owing
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Fig. 1. Comparison with SOTA HS trackers. We visualize the AUC versus
tracking speed in terms of FPS. The size of the circle represents the weighted
sum of the tracking speed (x-axis) and AUC (y-axis). A larger circle indicates
better performance.

to their simplicity and effectiveness, they have become a
fundamental paradigm in recent decades. Some efforts, such
as [36], [37], [38], [39], and [40] have been made in cor-
relation filters with hand-crafted features such as intensity,
color name [41], and histogram of oriented gradients [42].
By minimizing a least-squares error, the correlation filter
learns a classifier to determine the object state and updates
the model to adapt to object changes. However, hand-crafted
features have limitations in object representations. In contrast,
shallow convolutional features contain low-level information
with high spatial resolution, which is suitable for accurate
localization, while deeper features encode high-level informa-
tion with low resolution (LR), promising to improve tracking
robustness. Driven by deep learning, many elaborate track-
ers such as [5], [17], [43], and [44] inherit the Siamese
network. These models usually consist of two branches:
the template branch and the search branch. The template
branch takes a patch of the first frame as input, while the
search branch receives patches from subsequent frames. Both
branches share a network trained from massive samples to
ensure that the same transformation is imposed on these
two branches [2]. Although Siamese trackers exhibit superior
performance, they still face challenges such as BC and similar
appearance due to limited spectral information in RGB images
[7], [8].

B. Visual Object Tracking in HS Videos

With the advancement of imaging technology, HS cameras
can capture rich spectral, spatial, and temporal information
simultaneously [45], [46]. In particular, the spectral informa-
tion can reflect the material properties of objects, making HS
videos promising for tracking objects in complex scenarios [7],
[11]. Several excellent methods have been developed for HS
video object tracking, including both generative and discrim-
inative paradigms. Early efforts are based on the generative
paradigm, which determines the object by designing a repre-
sentation model. For example, Banerjee et al. [47] and Hien

Van et al. [48] explore the spectral angle mapper and mean
shift [49] to achieve HS object tracking.

For the discriminative paradigm, HS trackers jointly use
foreground and background regions to determine the object
state, thus improving tracking performance. Specifically,
HS trackers, such as [11], [13], [14], and [15], inherit cor-
relation filters and aim to exploit full-band spectral features.
For example, material based hyperspectral tracker (MHT) [11]
studies the tracking task from the perspective of material
features by using abundance features and local spectral-spatial
histograms of multidimensional gradients. While tensor-based
sparse correlation filter with spatially and spectrally weighted
and regularized (TSCFW) [15] studies tensor processing to
reduce spectral differences in homogeneous backgrounds.
Meanwhile, the sparse regularization term and context-aware
information are integrated into the correlation filter to suppress
false responses. The results have verified their effectiveness.
Robust features are the basis for reliable tracking, while
discriminative models determine the tracking performance [2].
Compared to traditional correlation filters, Siamese-based HS
trackers, such as [7], [8], [25], [31], [50], [51], and [52], are
more discriminative because they can leverage well-trained
RGB models to learn a common HS object representation.
For example, SEE-Net [7] first divides the HS image into
multiple false-color images that are then transferred to a SOTA
RGB tracker, and the final state is obtained by embedding
multiple weak tracking results. Similarly, BAE-Net [27] and
SST-Net [28] integrate multiple weak tracking results, which
may result in an expensive computational burden. Additionally,
object changes in appearance pose a significant challenge, and
effective strategies have been proposed to solve this issue such
as [7], [12], [28], [30], and [31]. However, the Siamese-based
HS trackers usually use the first frame to initialize tracking
template and remain fixed or slightly updated in the subsequent
frames of HS videos, making it difficult to exploit the temporal
information of objects.

III. PROPOSED APPROACH

In this section, we detail the proposed HS tracking method,
which includes the overall architecture, SAM, IM, prediction
module, and UM, as well as the training and inference
processes.

A. Overall Architecture

As illustrated in Fig. 2, the proposed SPIRIT HS tracker
is composed of five modules: the SAM, feature extraction
module, IM, prediction module, and UM. The input is a triple
consisting of the initial template, search region, and dynamic
template. As mentioned earlier, the band gap prevents bridging
pretrained RGB models to HS trackers directly. To attenuate
this issue, we propose a SAM that takes into account the
nonlinear and global interactions between spectral bands from
the perspective of spectral reconstruction. Meanwhile, it learns
the relationship between bands to evaluate their contributions,
allowing the HS image to be adaptively grouped into multiple
false-color images. The feature extraction module in a trans-
ferred RGB network is employed to extract deep features of
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Fig. 2. Overall architecture of the proposed SPIRIT HS tracker. The SPIRIT is a Siamese-based HS tracker composed of five modules: SAM, feature
extraction module, IM, prediction module, and UM.

HS bands while obtaining a discriminative object representa-
tion. To further achieve inter and intraband feature interactions,
the deep features generated from false-color images are first
integrated to realize the interband interaction based on learned
band contributions. Then, we propose an IBI network to
learn the IBI features. The interband and IBI features are
flattened, summed, and concatenated to feed into the prediction
module for localization. Furthermore, the proposed method
includes a novel UM that evaluates the tracking confidence
of the current state to adapt to object changes in appearance.
In the UM, a dynamically updated template is embedded to
simultaneously leverage the spectral, spatial, and temporal
information for handling tracking drifts in HS object tracking.

B. Spectral Awareness Module

To attenuate the band gap, we propose a SAM that converts
the HS image into multiple false-color images by exploiting
the spectral and spatial information. The structure of the SAM
is shown in Fig. 3, which consists of two parts: band excitation
and band reconstruction. The band excitation is designed to
calculate spectral contributions while the band reconstruction
part reconstructs the HS image to optimize the contribution
by minimizing the reconstruction error.

For an HS video, each frame I is denoted as I ∈ RM×N×B

with M × N pixels and B bands. I can be seen as a band set
I = [b1, b2, . . . , bB], where bi denotes the i th band. First, I
is input to the SAM to seek the interdependence among bands
by a function h. Then, we can obtain the spectral contributions
of all bands by

Z = σh(I ; α) (1)

Fig. 3. Structure of the SAM. It consists of the band excitation and band
reconstruction parts. Conv denotes the standard convolution. FC is a fully
connected layer. DeConv is a fractionally strided convolution layer. ReLU
and Sigmoid are the rectified linear unit activation and Sigmoid activation.

where Z ∈ R1×1×B is the band contribution with Z =

[z1, z2, . . . , zB], σ is the Sigmoid activation, and α denotes
the learnable parameter of h. Furthermore, we apply the mul-
tiplication operation to establish the excitation result between
the raw HS image I and band contribution Z , as follows:

R = I ⊗ Z (2)

where ⊗ represents the element-wise multiplication and R
refers to the result of band excitation.

To understand the interdependence among bands, it is
required to reconstruct the original HS image from the
excitation result R. The reconstruction function g with learn-
able parameters β takes R as input to obtain predicted
reconstruction result Î , as follows:

Î = g(R; β). (3)

The mean squared error (MSE) is used to measure the
reconstruction performance. The loss function is formulated

Authorized licensed use limited to: Wuhan University. Downloaded on March 03,2024 at 14:15:54 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: SPIRIT: SPECTRAL AWARENESS INTERACTION NETWORK WITH DYNAMIC TEMPLATE 5503116

Fig. 4. Structure of the IBI network in IM. The network takes the
concatenated features as input and achieves channel feature interaction with
global and local contexts. Moreover, a pixel-wise features interaction is
implemented followed by a bottleneck layer to obtain the final IBI result.
PWConv denotes the point-wise convolution.

as follows:

Lrec =

B∑
i=1

∥∥bi − b̂i
∥∥2

+ λ∥αβ∥
2 (4)

where Lrec represents the reconstruction loss, B is the number
of bands, and b̂i is the i th band of the predicted reconstruction
result Î . λ∥αβ∥

2 is used to limit the complexity of the model
and maintain the sparsity of band contributions [53]. α and β

can be solved by minimizing the loss Lrec in a gradient descent
fashion. So far, we are able to obtain the band contribution that
interprets the interdependence among spectral bands.

Benefiting from the end-to-end training fashion, the SAM
is able to cooperate with downstream modules to develop a
supervised scheme for learning the band contribution. There-
fore, the SAM not only produces the band contribution but also
serves downstream modules. Guided by band contributions Z ,
we sort all bands to form n = int(B/3) false-color images
D = [d1, d2, . . . , dn]. The contribution w of each false-color
image is computed by summing the contributions of each band
of each false-color image and then dividing by the number of
bands. All contributions of false-color images can be expressed
by W = [w1, w2, . . . , wn]. Finally, the generated false-color
images D are fed to the feature extraction module, and the
contribution W will also be reused to achieve interband feature
interaction in the IM.

C. Interaction Module

The band awareness module yields false-color images D
and their contributions W . Then, these false-color images are
fed to the feature extraction module, which is a modified
ResNet [54] network with the last stage and fully connected
layer removed. To exploit the full-band information and main-
tain high tracking efficiency, we propose an IM (see Fig. 4) that
takes the features extracted from the initial template, dynamic
template, and search region as input for inter and intraband
feature interactions, shown in Fig. 2.

As discussed above, the contribution W records the impact
of false-color images on downstream tracking tasks and can be
utilized to adaptively aggregate extracted features for robust
HS object tracking. Specifically, the interband feature inter-
action takes as input deep features generated by false-color

images and aggregates them by embedding learning fashion,
as follows:

Q =

∑n
i=1 wiϕ(di )∑n

i=1 wi
(5)

where di denotes the i th false-color image, wi denotes the
contribution of di , ϕ expresses the feature extraction function,
n is the number of false-color images, and Q denotes the
interband interaction result. It is worth noting that wi varies
with the input HS image, so that the interband interaction can
adaptively integrate features for tracking.

However, the interband interaction ignores the information
across all bands. To attenuate this problem, an IBI called
IBI network is proposed, as shown in Fig. 4. It takes a
concatenated result of the ϕ(d1), ϕ(d2), . . . , ϕ(dn) as input and
obtains IBI features. Inspirited by the attention mechanism, the
IBI network first embeds channel features at both global and
local scales followed by adaptively mining the pixel features of
different regions. Therefore, the IBI network is able to provide
additional flexibility for feature interactions across all spectral
bands of the HS image.

The channel attention mechanism usually squeezes each
channel into one value. This coarse manner tends to emphasize
the global feature texture. However, HS images usually have
a large percentage of backgrounds, and the global context
focuses more on backgrounds and eliminates most of the
band signals of interest objects. Suboptimal results would be
achieved if only the global channel attention mechanism is
available in IBI. To solve this issue, we synergize the local
with global contexts for information interaction.

Given concatenated feature X ∈ RH×W×C with C channels
and H × W pixels, the global context is obtained by

G(X) =
1

H × W

H∑
i=1

W∑
j=1

X[i, j,:] (6)

global(X) = B(PW 2δ(B(PW 1(G(X))))) (7)

where G(·) denotes the global average pool (GAP), global(·) ∈

R1×1×C denotes the global feature, B is the batch normal-
ization (BN), δ is the rectified linear unit (ReLU) activation
function, and PW1 and PW2 are two point-wise convolutions.

For the local context feature, we perform the IBI of each
spatial location

local(X) = B(PW4(δ(B(PW3(X))))) (8)

where local(·) ∈ RH×W×C denotes the local context. It is noted
that the width and height of local(·) are equal to the sizes of
input features, preserving, and emphasizing detailed features
across overall bands.

So far, we have obtained the global context global(X) and
local context local(X) along channel dimensions, and they are
refined by

X ′
= X ⊗ σ(global(X) ⊕ local(X)) (9)

where ⊕ denotes the broadcasting addition. X ′
∈ RH×W×C

stands for the refined feature that takes the global and
local contexts into account for intraband feature interactions.
However, the refined feature X ′ pays more attention to
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channel-wise interactions. Hence, pixel attention is imposed so
that it focuses more on specific object regions, i.e., the spatial
dimension. Specifically, the feature X ′ is fed to two standard
convolutions (i.e., Conv1 and Conv2) with ReLU activation
and Sigmoid activation, as follows:

Y = X ′
⊗ σ

(
Conv2

(
δ
(
Conv1

(
X ′

))))
(10)

where Y denotes the result of the pixel attention interaction.
Finally, the output F of the IBI network is obtained by

F = Conv4(Conv3(Y )) (11)

where Conv1 and Conv2 compose the bottleneck layer for
dimension reduction and obtaining a more compact output.
The IBI network encodes the channel-wise feature and pixel-
wise feature for intraband feature interaction, enhancing object
representations of tracked HS objects.

The result of the IM is obtained by flattening and summing
interband and IBI features. The interacted features of the initial
template, dynamic template, and search region are denoted as
Finit, Fdy, and Fsear, respectively. They are concatenated to
generate a feature sequence followed by delivering it to the
prediction module for localization.

D. Prediction and Update Modules

1) Prediction Module: In Fig. 2, the body of the pre-
diction module is an encoder-decoder transformer structure
(see Fig. 5) followed by a position prediction part. The
encoder is composed of six encoder layers, and each encoder
layer consists of a multihead self-attention coupled with a
feed-forward neural network (FFN), as shown in Fig. 5(a). The
encoder can learn the dependencies across spectral, spatial,
and temporal features in the HS sequence, therefore improving
the model’s discriminative capability. The decoder receives a
learnable target query and a sequence of features from the
encoder to predict the desired bounding box. The decoder
consists of six decoder layers. In contrast to the encoder,
each decoder layer is composed of a multihead self-attention,
a multihead cross-attention, and an FFN, as shown in Fig. 5(b).
In multihead cross-attention, a target query is trained to focus
on all positions on the template and search region features [55],
yielding robust object representations for localization. For the
bounding box prediction, it takes the search region features
from the encoder and the output of the decoder as input.
The salient features in search region are then enhanced by
an attention mechanism. The new features are reshaped and
fed to the fully convolutional network to predict probability
maps of the bottom-right and top-left corners of the object.
Finally, the object’s coordinates are computed by

(
x̂br, ŷbr

)
=

 W ′∑
x=0

H ′∑
y=0

x Pbr(x, y),

W ′∑
x=0

H ′∑
y=0

y Pbr(x, y)


(
x̂ tl, ŷtl

)
=

 W ′∑
x=0

H ′∑
y=0

x Ptl(x, y),

W ′∑
x=0

H ′∑
y=0

y Ptl(x, y)

 (12)

where (x̂br, ŷbr) and (x̂ tl, ŷtl) indicate the predicted
bottom-right and top-left corners and Pbr(x, y) and Ptl(x, y)

Fig. 5. Structure of the Transformer encoder-decoder in the prediction mod-
ule. (a) Encoder takes input features and a sinusoidal positional embedding as
input. (b) Decoder receives the output of the encoder and a learnable target
query to obtain the final result.

denote corresponding probability maps with a size of
H ′

× W ′ pixels.
2) Update Module: As discussed above, for Siamese-based

HS trackers, the template is usually initialized in the first
frame and kept fixed or slightly updated in subsequent frames.
Nevertheless, object appearance often varies from frame to
frame, and failure to update the template in time could
lead to tracking drifts, especially for objects in long time-
series sequences. To handle this issue, the proposed SPIRIT
tracker cooperates with an efficient yet effective UM in which
a dynamically updated template sampled from intermediate
frames is treated as an auxiliary input, as shown in Fig. 2.
The UM takes the output of the decoder as input and aims to
evaluate the tracking confidence of current state for updating
the template dynamically. The confidence evaluation function
is implemented by a three-layer perceptron network followed
by a Sigmoid activation. If the tracking confidence is higher
than a common threshold τ = 0.5 and the interval is reached,
the tracking state will be considered reliable and the original
dynamic template will be updated by a new dynamic template
(see Fig. 2). In brief, the UM can attach temporal information
to HS object tracking task, thus adapting to object changes in
appearances over time.

E. Training and Inference

1) Training: Considering limited HS samples, initializing
the parameters of SPIRIT in a random fashion would achieve
unsatisfactory effects. To this end, the feature extraction
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module, prediction module, and UM are initialized with net-
work parameters pretrained on RGB data. While parameters
of the SAM and IM are initialized in a random manner.
In training, we train the parameters of SAM, IM, and UM, and
the remaining modules are frozen to better unlock the potential
of pretrained RGB models. We sample a triple including the
initial template, dynamic template, and search region to train
the proposed SPIRIT tracker. The sizes of the triple are 128 ×

128 × B, 128 × 128 × B, and 320 × 320 × B, respectively.
The proposed SPIRIT tracker is trained with multitask losses
in an end-to-end fashion, as follows:

Ltotal = γrecLrec + γl1Ll1 + γdiouLdiou + γclLcl (13)

where Lrec represents the reconstruction loss (1) of SAM,
Ll1 denotes the L1 loss, and Ldiou denotes distance inter-
section over union loss [56] between the ground-truth and
predicted box in the prediction module, and Lcl denotes the
cross-entropy loss in UM. γrec, γl1, γdiou, and γcl are the weight
factors.

For Lrec, it is the sum of the triple reconstruction losses,
i.e., the initial template loss Linit

rec , search region loss Lsear
rec and

dynamic template loss L
dymc
rec , as follows:

Lrec =
1
2

(
Lsear

rec +
1
2

(
Linit

rec + Ldymc
rec

))
. (14)

For Ldiou, it is defined as

Ldiou = 1 − IoU
(

Bi , B̂i
)

+
ρ2

(
bi , b̂i

)
c2 (15)

where Bi and B̂i denote the ground truth and predicted box,
bi and b̂i denote the centers of Bi and B̂i . ρ(·) represents the
Euclidean distance, and c represents the diagonal length of the
smallest enclosing box that covers Bi and B̂i .

For the Lcl, it is defined as

Lcl = yi log(li ) +
(
1−yi

)
log(1 − l i ) (16)

where li denotes the predicted tracking confidence of the
current state and yi denotes the ground-truth label.

2) Inference: In the inference process, we first crop the
initial and dynamic templates from the first HS frame and
divide them into two sets of false-color images based on the
SAM, as shown in Fig. 2. These false-color images are then fed
to the feature extraction module to extract deep features. The
IM takes corresponding features to realize inter and intraband
feature interactions. Similarly, for subsequent frames, a search
region is cropped from the HS frame and sequentially fed
to the SAM, feature extraction module, and IM. Then, the
interacted features of the initial template, dynamic template,
and search region are concatenated and fed to the prediction
module to yield the final bounding box. In addition, the output
of the decoder is fed to the UM to compute the tracking
confidence for updating the dynamic template accordingly. The
new dynamic template will also be cropped from the current
HS image to replace the original template, adapting to object
changes in appearance over time.

IV. EXPERIMENTS

A. Experimental Setups

1) Data Description: The proposed method is trained and
tested on the HS Object Tracking Competition dataset [11].
The dataset consists of 40 sets of training videos and 35 sets of
test videos, totaling 75 sets of videos, captured at 25 frames/s.
Each set of videos contains three types of data, i.e., HS video
(16 bands), false-color video (three bands), and RGB video
(three bands). The false-color videos are generated by cor-
responding HS videos. The RGB video is captured from a
viewpoint close to the HS video. The dataset is annotated
with 11 finely attributes including scale variation (SV), fast
motion (FM), BC, in-plane rotation (IPR), out-of-plane rota-
tion (OPR), occlusion (OCC), deformation (DEF), motion
blur (MB), illumination variation (IV), LR, and out-of-view
(OV). Each object is labeled with a horizontal bounding box
indicated by the center position, width, and height. HS and
false-color videos share labels, while RGB video’s labels are
generated independently.

2) Implementation Details: The proposed approach is
implemented in Python with PyTorch and trained on a machine
equipped with the Intel Core i7-12700F Central Processing
Unit (CPU) and NVIDIA GeForce RTX 4060 Graphics Pro-
cessing Unit (GPU). The initial network [55] is pretrained on
RGB datasets consisting of train-splits of the GOT-10K [21],
TrackingNet [22], LaSOT [23], and COCO [57]. Subsequently,
the HS dataset is further utilized for training by using the
Adam with decoupled weight decay (AdamW) method [58]
with a learning rate of 5e−5 and weight decay of 1e−4.
The values for γrec, γl1, γdiou, and γcl are implicitly set to
0.012, 5.0, 2.0, and 0.5, respectively. The number of heads
in the multihead attention is set to 8, and the dropout rate
is set to 0.1. The training sizes of the search and template
patches are set to 320 × 320 × 16 pixels and 128 × 128 ×

16 pixels, respectively. The network is then trained for a total
of 20 epochs with a batch size of 8.

3) Evaluation Metrics: Success plots and precision plots
are applied to benchmark the tracking effects in a one-pass
evaluation fashion [59]. In the success plot, overlap is com-
monly used for evaluation. Given the ground truth RG and
predicted result RT , the overlap is calculated by

overlap =
|RG ∩ RT |

|RG ∪ RT |
(17)

where ∩ and ∪ denote the intersection and union opera-
tors respectively, and |·| computes the number of pixels in
the region. The success plot indicates that the success rate
exceeds the threshold range Ts ∈ [0, 1].

The precision plot displays the percentage of frames where
the center location error (CLE) is smaller than the predefined
threshold Tk ∈ [1, 50]. CLE, a common measure of distance,
is calculated by

CLE =

√
(CTx − GTx )

2
+

(
CTy − GTy

)2 (18)

where (CTx , CTy) and (GTx , GTy) are the centers of the
RT and RG , respectively. The precision plot evaluates the
performance in localization while the success plot accounts for
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Fig. 6. Comparison with RGB trackers using hand-crafted features on RGB videos. (a) Success plot. (b) Precision plot.

Fig. 7. Comparison with RGB trackers using hand-crafted features on false-color videos. (a) Success plot. (b) Precision plot.

both localization and scale estimation performance of trackers.
The area under the curve (AUC) of the success plot and the
distance precision (DP) at 20 pixels of the precision plot are
used for evaluation. In this article, we primarily use AUC to
rank all trackers, and the frames per second (FPS) is utilized
to measure the running efficiency.

B. Quantitative Evaluation With RGB Trackers

1) Hand-Crafted Feature-Based Trackers: We compare the
proposed SPIRIT tracker with ten SOTA trackers using
hand-crafted features, namely AutoTrack [3], kernelized cor-
relation filter (KCF) [37], DSST [38], Staple [39], CN [41],
ARCF [60], BACF [61], spatial-temporal regularized correla-
tion filter (STRCF) [62], SAMF [63], and DAT [64]. These
trackers are tested on RGB and false-color videos, while
SPIRIT is tested on HS videos. Fig. 6 displays the success
and precision plots tested on RGB videos, and the legends
indicate the AUC and DP values, respectively.

Notably, the proposed SPIRIT achieves the optimal results,
with an AUC of 0.679 and DP of 0.925, while KCF per-
forms the worst. Among the compared trackers, STRCF ranks
first by balancing aggressive and passive learning to adapt
to significant object changes in appearance. Compared with
STRCF, the SPIRIT yields a gain of 11.0% in AUC and
9.6% in DP. Furthermore, compared to ARCF and AutoTrack,
SPIRIT improves the AUC by 11.5% and 14.5%, respectively,
highlighting the benefits of utilizing spectral, spatial, and
temporal features. These results suggest that the rich spectral
and temporal information present in HS videos can enhance
tracking effects.

Intuitively, HS videos can be converted to false-color videos
followed by using RGB trackers for object tracking. Fig. 7
illustrates the results tested on generated false-color videos.
Remarkably, STRCF still achieves a respectable performance,
with an AUC of 0.568 and a DP of 0.838. The proposed
SPIRIT tracker demonstrates superior performance, achieving
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TABLE I
COMPARISON WITH DEEP FEATURE-BASED TRACKERS IN TERMS OF AUC

11.1% and 8.7% improvements in AUC and DP, respectively.
Experimental results underscore the suboptimal nature of
converting HS videos to false-color videos for object tracking,
as it inevitably leads to a loss of material spectral information
that is crucial for achieving robust tracking performance.

2) Deep Feature-Based Trackers: We conduct a compre-
hensive comparison with 12 SOTA trackers that utilize deep
features, including SimTrack [4], SiamCAR [5], SiamRPN++

[17], ATOM [19], Stark [55], ECO [65], SiamBAN [66],
LightTrack [67], DaSiamRPN [68], DiMP [69], RTS [70],
and SiamGAT [71]. These trackers encompass diverse types
of backbones and tracking paradigms. Table I presents
the experimental results tested on RGB and false-color
videos.

It is worth remarking that SimTrack, a unified transformer
tracking framework, achieves outstanding results, yielding an
AUC of 0.664 and 0.602 on RGB and false-color videos,
respectively. Compared with SimTrack, the proposed SPIRIT
gains by 1.5% and 7.7%, respectively. Additionally, Stark,
an anchor-free transformer tracker that can capture long-range
dependencies in both spatial and temporal dimensions, is sur-
passed by the SPIRIT by 4.2% and 10.0% on RGB and
false-color videos, respectively. Overall, these results demon-
strate the superiority of the proposed approach compared to
SOTA RGB trackers using deep features.

3) Parallel Analysis: Fig. 8 shows the parallel results of
the top ten SOTAs with different features (i.e., hand-crafted
features and deep features) on two types of videos (i.e., RGB
videos and false-color videos). We find that trackers using
deep features outperform those with hand-crafted features due
to the discriminative and generalized capabilities derived from
complex models and trained on sufficient data. Additionally,
most trackers exhibit poorer performance on false-color videos
than RGB videos. Notably, the AUC degradation of deep
feature-based trackers is more significant than that of hand-
crafted feature-based trackers, mainly due to the intrinsic
differences in object representations between RGB and false-
color videos, despite sharing three bands. The proposed
SPIRIT tracker first leverages deep features learned from RGB
and HS data for object representations, and then achieves intra
and interband feature interaction, and finally is supported by a
novel UM, achieving the optimal result. Overall, the proposed
approach presents a promising solution for HS video object

Fig. 8. Parallel comparisons with the top ten RGB trackers using hand-crafted
and deep features. The top ten trackers are ranked by the AUC of RGB
videos, For the hand-crafted feature-based trackers, the top ten trackers are
STRCF, ARCF, AutoTrack, BACF, Staple, DSST, SAMF, DAT, CN, and
KCF. For the deep feature-based trackers, the top ten trackers are SimTrack,
SiamRPN++, SiamGAT, DiMP, Stark, SiamCAR, DaSiamRPN, ATOM, RTS,
and SiamBAN.

tracking, with potential applications in material discrimination
and related fields.

C. Quantitative Evaluation With HS Trackers

In this section, we compare our SPIRIT with 12 represen-
tative HS trackers, including SEE-Net [7], SiamHYPER [8],
MHT [11], MFI [13], TSCFW [15], BAHT [25], BAE-Net
[27], SST-Net [28], SiamOHOT [50], CS_BACF [72],
DeepHKCF [73], and convolutional network based hyper-
spectral tracking (CNHT) [74]. Table II summarizes the
characteristics and experimental results of these trackers,
sorted by AUCs. With an AUC of 0.679, SPIRIT exhibits com-
petitive result and secures the overall first place, while CNHT
performs the worst. SiamHYPER and SEE-Net achieved AUCs
of 0.678 and 0.666, respectively, ranking the second and third
places. In terms of the DP metric, SiamHYPER, SEE-Net,
and SPIRIT produce 0.947, 0.934, and 0.925, respectively,
leading to the top three places. From Table II, we observe
that trackers utilizing deep features typically outperform
those with hand-crafted features, as found in Fig. 8. For
instance, the AUCs of SiamHYPER (0.678), SEE-Net (0.666),
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TABLE II
DETAILS OF HS TRACKERS AND EXPERIMENTAL RESULTS

Fig. 9. Success plots for (a)–(k) individual attributes and (l) overall. Six SOTA trackers are compared with the proposed SPIRIT. (a) SV. (b) FM. (c) BC.
(d) IPR. (e) OPR. (f) OCC. (g) DEF. (h) MB. (i) IV. (j) LR. (k) OV. (l) overall.
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Fig. 10. Radar plot for individual attributes and overall in terms of AUC.
Values in parentheses are AUCs of the proposed SPIRIT tracker.

and SiamOHOT (0.634) surpass those of CS_BACF (0.589),
TSCFW (0.587), and MHT (0.586). Furthermore, we observe
that Siamese-based trackers generally outperform those with
correlation filters, as Siamese networks enable the learning of
discriminative features. Although CNHT and DeepHKCF uti-
lize deep features for HS object tracking, the KCF framework
intrinsically limits their performance. The proposed SPIRIT
tracker inherits the Siamese tracker and can leverage deep
features to acquire discriminative features.

It is noteworthy that recent SOTAs have made efforts to
explore full-band information for HS object tracking, such as
SiamHYPER, SEE-Net, SiamOHOT, SST-Net, BAE-Net, and
TSCFW. These methods are promising as the utilization of
full-band information enables trackers to potentially become
material-aware and acquire more discriminative cues, thereby
yielding robust performance. In addition, MFI, TSCFW,
DeepHKCF, and CNHT can update their models to adapt to
object changes, but the hand-crafted features or model struc-
ture would limit their performance. Meanwhile, BAE-Net and
SST-Net are online trackers with acceptable accuracy but low
speed. For Siamese-based HS trackers, such as SiamHYPER,
SEE-Net, and SiamOHOT, the templates are typically fixed
in the first frame, which may result in tracking drift in case
of significant object changes. Overall, the proposed SPIRIT
method inherits the Siamese framework and endeavors to
acquire full-band information. Moreover, SPIRIT also contains
a UM to deal with object changes for producing competitive
results.

D. Attribute-Based Evaluation

To test the properties of trackers, we further conduct exper-
iments on 11 challenging attributes. For simplicity, we only
report the results of excellent RGB trackers (i.e., SimTrack
[4] and STRCF [62]) and HS trackers (i.e., SEE-Net [7],
SiamHYPER [8], MHT [11], and SiamOHOT [50]). SimTrack

and STRCF are run on false-color videos, while the rest are
tested on HS videos. Figs. 9 and 10 exhibit the success and
radar plots for individual attributes and overall, respectively.
It is observed that SPIRIT ranks first in six (i.e., SV, FM, BC,
IPR, OPR, and OCC) out of 11 attributes. BC is the most
prevalent attribute. For this attribute, the AUCs of SPIRIT
(0.715), SiamHYPER (0.714), SEE-Net (0.705), SiamOHOT
(0.699), and MHT (0.606) are significantly superior to those
of RGB trackers, due to exploiting rich spectral information.
SV is another challenging attribute, and SPIRIT achieves
the optimal AUC of 0.665, which is 1.6% and 1.9% higher
than the AUCs of the second-ranked SEE-Net (0.649) and
the third-ranked SiamHYPER (0.646), respectively. In the
remaining attributes including DEF, MB, IV, LR, and OV,
SPIRIT ranks the second place, and its performance is com-
parable or better than that of SiamHYPER, SEE-Net, and
SimTrack. Noticed that SimTrack shows a significant boost
over SPIRIT in the OV attribute. This is because SimTrack
jointly implements the feature extraction and interaction by a
transformer backbone, which helps to remove elaborate IMs
and consider invariant part-level cues for tracking. In gen-
eral, experimental results demonstrate that SPIRIT can handle
challenging attributes and achieve the optimal overall AUC of
0.679.

E. Running Speed Comparison

We compared the running speeds of several SOTA HS
trackers, as shown in Table II and Fig. 1. These trackers includ-
ing SST-Net (0.5 frames/s), BAE-Net (0.5 frames/s), MFI
(0.4 frames/s), and DeepHKCF (0.9 frames/s) have relatively
slower tracking speeds than SiamHYPER (19.0 frames/s),
SEE-Net (8.7 frames/s), BAHT (16.0 frames/s), and CS_BACF
(11.5 frames/s). Only the proposed SPIRIT and SiamOHOT
achieve high processing speeds of 26.0 and 38.0 frames/s,
respectively. In addition, the proposed SPIRIT achieves supe-
rior tracking accuracy than SiamOHOT. It is found that
SEE-Net, SiamOHOT, and SPIRIT all inherit the framework
of SiamFC [52], but there are significant differences in the
running speeds. This is because SiamOHOT focuses more on
using knowledge distillation techniques to refine the model
to improve tracking efficiency. While SEE-Net incorporates
the decision-level fusion strategy to improve tracking effec-
tiveness but introduces an additional computational burden.
Our approach adopts a feature-level fusion strategy to ensure
tracking efficiency and introduces the SAM, IM, and UM to
improve tracking effectiveness. HS videos are typically cap-
tured at a frame rate of 25 frames/s. Therefore, the proposed
SPIRIT can process HS videos in real-time while maintaining
competitive tracking accuracy, making it suitable for on-board
HS data processing.

F. Visual Comparison

In this section, we conduct a qualitative comparison with six
SOTAs including SimTrack [4], SEE-Net [7], SiamHYPER
[8], MHT [11], SiamOHOT [50], and STRCF [62]. These
HS trackers are run on HS videos, while SimTrack and
STRCF are tested on false-color videos. Fig. 11 presents visual
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Fig. 11. Qualitative comparisons of the proposed SPIRIT tracker with six SOTA trackers. Results are shown in corresponding false-color images, with the
current frame displayed in the upper-left corner of each image. (a) toy2, attribute: BC, OCC, SV, IV, and OPR. (b) toy1, attribute: BC and OCC. (c) hand,
attribute: BC, SV, DEF, and OPR. (d) board, attribute: IPR, OPR, BC, OCC, and SV. (e) bus2, attribute: IV, SV, OCC, and FM. (f) face2, attribute: IPR,
OPR, SV, and OCC.

examples of six false-color videos, including toy2, toy1, hand,
board, bus2, and face2. These videos cover diverse challenging
attributes. In the toy2 video, the object undergoes BC, OCC,
SV, IV, and OPR. It is noted that SimTrack inaccurately
estimates the object scale at frames #0036 and #0206, while
MHT and STRCF lose the object at frames #0206 and #0217
due to significant illuminance variation. In the board video,
SiamHYPE, SEE-Net, SiamOHOT, and SimTrack encounter
varying degrees of tracking drifts, while SPIRIT is able to
track the object effectively. In other cases shown in Fig. 11,
SPIRIT demonstrates better performance in handling challeng-
ing attributes. Overall, the qualitative evaluation highlights
the robustness of the proposed SPIRIT approach, making it a
promising candidate for HS video object tracking applications.

G. Ablation Study

In this section, we conduct a series of ablation experiments
to validate the major components including the SAM, IM, and

UM. For this purpose, five variants including the Baseline,
Variant_1, Variant_2, Variant_3, and Variant_4 are constructed
and compared with the SPIRIT tracker on HS videos. Table III
summarizes the components and experimental results, while
Fig. 12 presents the success plot and precision plot of these
variants and the SPIRIT tracker. The Baseline serves as the
baseline approach, which adopts the band grouping strat-
egy of Sequential and the feature interaction of Addition
to realize HS object tracking without dynamically updating
the template. Variant_1 integrates the proposed SAM on top
of the Baseline for band grouping. On the basis of Vari-
ant_1, Variant_2 introduces the interband feature interaction
of the proposed IM. Variant_3 further integrates the intraband
feature interaction of the IM on top of Variant_2. More-
over, Variant_4 indicates the removal of the intraband feature
interaction from the proposed SPIRIT method that inte-
grates components, including SAM, interband and IBI of IM,
and UM.
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TABLE III
DETAILS OF VARIANTS AND EXPERIMENTAL RESULTS

Fig. 12. (a) Success plot and (b) precision plot of the variants tested on HS
videos.

As shown in Table III, the Baseline attains an AUC of
0.418 and a DP of 0.618. However, the introduction of the
SAM in Variant_1 results in a significant improvement in
both AUC and DP. Specifically, there is a 17.5% increase
in AUC (from 0.418 to 0.593) and a 19.4% increase in DP
(from 0.618 to 0.812). This can be attributed to the ability
of SAM to divide the HS image into false-color images
with low correlation, thereby reducing information redundancy
that may exist in a Sequential fashion. Additionally, the
SAM generates the contributions of false-color images that
can be utilized to facilitate interband interactions of the IM.
By comparing Variant_2 to Variant_1, it is evident that the
AUC and DP of Variant_2 are improved by 3.5% and 3.3%,
respectively. This implies that the SAM not only produces
low correlation false-color images but also enhances interband
feature interactions of the IM, leading to an improvement
in performance. However, Variant_2 only considers interband
interaction, with the AUC and DP of 0.628 and 0.845, respec-
tively, while ignoring the potential for exploiting intraband
feature interactions. Upon comparing Variant_2 and Vari-
ant_3, we find that the addition of IBI in Variant_3 leads
to 1.2% and 2.0% increases in AUC and DP, respectively.
This is because IBI, built on the foundation of interband
interaction, enables Variant_3 to learn more robust object
representations, which in turn facilitates HS object tracking.
Similar conclusions can be drawn by comparing Variant_4
with SPIRIT. The IBI network improves performance at the

cost of only a few computational burdens, achieving a trade-off
between efficiency and effectiveness. Compared to Variant_1,
Variant_3 shows a 4.7% increase in AUC and a 5.3% increase
in DP, further validating the effectiveness of the proposed
IM. To prove the role of the UM, we conduct experimental
comparisons with and without dynamically updated templates.
A comparison between SPIRIT and Variant_3 reveals that
dynamically updating the template increases the AUC and DP
by 3.9% and 6.0%, respectively. With the aid of the UM, the
proposed SPIRIT is capable of acquiring spectral, spatial, and
temporal information to adapt to object changes in appearance,
resulting in satisfactory tracking results. Similar conclusions
can be drawn by comparing Variant_4 and Variant_2. In sum-
mary, experimental results validate the effectiveness of major
components of the proposed method. As a result, the proposed
SPIRIT is able to produce competitive performance through
comprehensive utilization of these components.

V. CONCLUSION

This article presents an end-to-end deep learning network
SPIRIT for HS video object tracking. First, the proposed
method constructs a SAM that evaluates the band contributions
to downstream missions by considering nonlinear and global
interactions from the perspective of spectral reconstruction.
Guided by this evaluation, the HS image is adaptively divided
into multiple false-color images, which are fed to a feature
extraction module in a transferred tracking network pretrained
with RGB data to obtain robust object representations by
exploiting the full-band information. Subsequently, an IM is
proposed to achieve interband and intraband feature interaction
while ensuring tracking speed. Furthermore, the proposed
SPIRIT contains a novel UM that evaluates the tracking
confidence to adapt to object changes and attenuate tracking
drifts. Extensive experiments demonstrate that the proposed
method achieves the optimal trade-off between effectiveness
and efficiency.

Nevertheless, our SPIRIT has some shortcomings. First, the
feature extraction process consumes a lot of computational
cost. Second, the motion information contained in the video
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frames is ignored, leading to limited adaptability to complex
scenes. Therefore, more attention should be paid to simplifying
the model structure. Besides, using transformer attention to
synergize the appearance and motion information of the object
may also be a promising solution.
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