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A B S T R A C T   

Hyperspectral video offers a wealth of material and motion cues about objects. This advantage proves invaluable 
in addressing the inherent limitations of generic RGB video tracking in complex scenarios such as illumination 
variation, background clutter, and fast motion. However, existing hyperspectral tracking methods often prioritize 
the material cue of objects while overlooking the motion cue contained in sequential frames, resulting in un-
satisfactory tracking performance, especially in partial or full occlusion. To this end, this article proposes a novel 
hyperspectral video object tracker via fusing material and motion cues called SENSE that leverages both material 
and motion cues for hyperspectral object tracking. First, to fully exploit the material cue, we propose a spectral- 
spatial self-expression (SSSE) module that adaptively converts the hyperspectral image into complementary false 
modalities while effectively bridging the band gap. Second, we propose a cross-false modality fusion (CFMF) 
module that aggregates and enhances the differential-common material features derived from false modalities to 
arouse material awareness for robust object representations. Furthermore, a motion awareness (MA) module is 
designed, which consists of an awareness selector to determine the reliability of each cue and a motion prediction 
scheme to handle abnormal states. Extensive experiments are conducted to demonstrate the effectiveness of the 
proposed method over state-of-the-arts.   

1. Introduction 

Visual single object tracking, as one of the most fundamental tasks, 
has found widespread applications in human-machine interaction, 
traffic analysis, medical image processing, and video surveillance [1–3]. 
Its primary objective is to establish the association of an object in a 
sequence. Significant efforts have been made in object tracking for the 
red-green-blue (RGB) modality [4–7]. Due to the limited spectral in-
formation, RGB-based modality tracking still faces challenges in com-
plex scenarios such as low-light conditions at night, poor visibility 
caused by fog and haze, similar object appearance, and background 
clutter [8,9]. In response to the limitations of a single RGB modality, the 
integration of multiple modalities such as RGBT (RGB plus Thermal 
infrared) and RGBD (RGB plus Depth) has emerged as a promising 
approach to address the aforementioned challenges [10–13]. As depic-
ted in Fig. 1, the depth modality accentuates the intricate 
three-dimensional structural information of the object, whereas the 

thermal modality focuses on capturing radiant heat, thereby offering 
complementary cues to the RGB modality and enhancing tracking per-
formance [14]. However, both RGBD and RGBT modalities typically 
necessitate the use of two or more imaging devices. For instance, in 
RGBT tracking, a combination of CCD and thermal infrared cameras is 
typically mounted on a platform to concurrently record data. Despite 
proximity, capturing the same scene with both cameras can be chal-
lenging, particularly for small objects at a considerable distance [15,16]. 
Consequently, aligning the RGB and Thermal modalities has become 
standard practice, albeit potentially leading to image distortion issues, 
as illustrated in Fig. 1(c) and (d). 

With the continuous development of imaging devices, hyperspectral 
(HS) cameras have evolved as powerful tools for capturing compre-
hensive spectral radiant information of tracked objects [17,18], equip-
ping trackers with the capability to identify materials [19]. Notably, all 
spectral bands are captured from the same viewpoint, eliminating the 
need for cumbersome multi-modality alignment. However, effective 
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utilization of potential modality information in HS video remains an 
area for further research. Currently, achieving robust HS video tracking 
encounters several challenges. First, the limited availability of HS video 
datasets poses a significant obstacle to directly training a robust HS 
tracker [8,20]. Second, the disparity of the band numbers between the 
RGB and HS data (i.e., the band gap) impedes the direct application of 
pre-trained RGB models to HS tasks [21,22]. Despite notable endeavors 
from previous studies [8,19,21,23], they often focus solely on leveraging 
the material cue of objects and neglect the motion cue present in 
sequential frames. As a result, their effectiveness may be compromised, 
particularly in abnormal states such as occlusion (Fig. 2) and fast mo-
tion. Discriminative and invariant features are fundamental for 
achieving robust HS video tracking, while a suitable representation 
model determines the ceiling of performance. Previous endeavors such 
as TSCFW [24], MHT [19], TASSCF [25], and [26] primarily rely on 
hand-crafted features and inherit correlation filters. Compared to deep 
features, the limited discriminative capability of hand-crafted features 
affects the performance of HS trackers [21,27]. To address the limita-
tion, recent works such as SST-Net [28], BRRF-Net [29], TFTN [30], and 
SiamOHOT [31] have been developed to exploit deep features for robust 
object representations, and their performance has been validated. In 
addition, traditional correlation filters remain difficult to achieve com-
parable performance against deep Siamese networks, as evidenced by 
numerous studies in the RGB tracking domain [32–35]. Hence, current 
HS trackers primarily concentrate on exploring the potential of the deep 
Siamese network to attain robust performance. As mentioned above, 
limited HS training samples present a challenge in training a generalized 
deep model. Naturally, large-scale datasets from the RGB tracking 
domain such as GOT-10K [16], TrackingNet [36], and ImageNet [37] 
can be reused to pre-train the HS model followed by fine-tuning using HS 
datasets. However, the band gap prevents bridging pre-trained RGB 
models to HS trackers directly [21]. To attenuate this issue, several 
methods have been proposed such as BAHT [38], BS-SiamRPN [39], 
SiamHT [40], and [41], which aim to convert the HS image into a 
three-channel representation through dimension reduction or manual 
selection. It is worth noting that this fashion inevitably introduces 
spectral loss and potentially impacts effectiveness [21]. Alternatively, 
other methods such as BRRF-Net [29], BAE-Net [22], and SST-Net [28] 
strive to exploit the full band information. They initially transform the 
HS image into a collection of false color images with equivalent con-
tributions, subsequently employing average ensemble learning to fuse 
multiple response maps or weak tracking results. This fashion usually 
achieves better performance. It is important to acknowledge that not all 
HS bands contribute equally to their formation and downstream 
tracking tasks [21]. Treating all bands equally may result in suboptimal 

outcomes [42]. Recent state-of-the-art (SOTA) approaches such as 
SEE-Net [21] and SiamBAG [23] have demonstrated the effectiveness of 
dynamically aggregating weak tracking results based on the contribu-
tion of false color images, yielding competitive performance. Addition-
ally, from various perspectives, SOTA HS trackers like TFTN [30] and 
CBFF-Net [27] have been developed with extensive experiments show-
casing their superiority. However, the above efforts often prioritize the 
material cues at the expense of critical motion cues of the tracked object, 
especially in complex scenarios where the material cue is unreliable 
such as the case involving occlusion shown in Fig. 2. 

Motivated by the above discussions and analysis, this article aims to 
fuse both material and motion cues for HS video single object tracking. 
We propose an end-to-end hyperspectral video object tracker via fusing 
material and motion cues (SENSE). The key components of SENSE 
include the spectral-spatial self-expression module, cross-false modality 
fusion module, and motion awareness module. To bridge the band gap, 
we propose a spectral-spatial self-expression module, which adaptively 
partitions the HS image into complementary false color representations 
with varying contributions. These false color images capture the object’s 
spectral reflectance under diverse wavelengths, similar to multiple false 
modalities with complementary features, as shown in Fig. 1. Next, these 
false modalities are fed into a feature extraction module, which utilizes a 
transferred tracking network pre-trained with RGB data to mitigate the 
issue posed by limited training samples. Subsequently, we propose a 
cross-false modality fusion module to aggregate and enhance the 
differential-common features extracted from false modalities, obtaining 
robust object representations. Additionally, we design a motion aware-
ness module to determine which cue (i.e., material cue and motion cue) 
is reliable and predict the final position and scale when the material cue 
is deemed unreliable. 

The primary contributions of this article are summarized as follows. 

• A spectral-spatial self-expression (SSSE) module is proposed to cap-
ture both spectral and spatial features for effectively solving the self- 
expression model. With the SSSE module, the HS image can be 
dynamically grouped into complementary false modalities with 
varying contributions, bridging the band gap. 

• A cross-false modality fusion (CFMF) module is proposed to aggre-
gate and enhance the differential-common features of false modal-
ities, thereby obtaining robust object representations.  

• A motion awareness (MA) module is designed, consisting of an 
awareness selector to determine which cue (i.e., material and mo-
tion) is reliable, as well as a motion prediction scheme to address 
abnormal states. The SSSE, CFMF, and MA modules are unified into a 

Fig. 1. Visualization of different modalities. (a) RGB. (b) Depth. (c) RGB. (d) Thermal infrared. (e) and (f) are false modalities generated from the HS modality.  
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Siamese network, enabling the SENSE to be both material and mo-
tion awareness. 

Extensive experiments are conducted to validate the proposed 
method. The remainder is organized as follows. Sections 2 and 3 provide 
a review of related work and describe the proposed approach, respec-
tively. Experiments and analysis are presented in Section 4. Finally, 
Sections 5 and 6 present ablation studies and conclusions, respectively. 

2. Review on video tracking methods 

In this section, we provide a comprehensive review of related object 
tracking methods. 

2.1. Fusion of RGB and motion for video tracking 

Other than the appearance cues, the motion cues are also crucial for 
action recognition in the tracking paradigm. To improve tracking per-
formance, several studies have been carried out focusing on motion cues 
such as particle filter, Kalman filter [43], and optical flow. CPKF [44] 
contrasts the correlation particle filter method with motion estimation 
for satellite video object tracking. DOCPF [45] introduces a 
distractor-occlusion aware correlation particle filter for object tracking 
in satellite videos. In [46], a novel particle filtering framework is pro-
posed to address template-based visual object tracking probabilistically. 
BAPF [47] inherits the adaptive particle filter to estimate the proposal 
and posterior distribution for face detection and tracking. In [48], the 
integration with the Kalman filter and data association techniques is 
discussed for object representation and localization. DF [7] cooperates 
Kalman filter and non-linear regression to implement object tracking in 
satellite video where the tracked objects are very small [49,50]. [51] 
constructs an accurate continuous-discrete extended Kalman filter for 
flexible and robust radar tracking. In [52], a novel JMMAC tracker using 
appearance and motion cues is proposed for RGBT video object tracking. 
For mining the motion information, JMMAC [52] attempts to jointly 
model the motion patterns of the object and camera by Kalman filter and 
transformation matrix, respectively. For the optical flow, it can repre-
sent the apparent motion of the brightness patterns and capture infor-
mation about the magnitude and direction of motion among 
neighboring frames of a video sequence [53]. Conventional optical flow 
techniques have been widely used in RGB video object tracking such as 
VCF [54], MOFT [55], and RAMC [56] Other than the conventional 
optical flow, recent efforts have explored the potential of deep motion 
optical flow for object tracking. FlowTrack [57] proposes an end-to-end 
flow correlation object tracking framework to mine the abundant flow 
information in video frames. In [58], the authors investigate the impact 
of deep motion features in a DCF-based tracking framework. They 
demonstrate that deep optical flow features can provide complementary 
information to appearance cues for improved tracking performance. In 
addition, ARTrack [59] presents spatio-temporal prompts to model the 
sequential evolution of the trajectory propagating motion cues for 
obtaining more coherent tracking results. 

However, previous research has primarily focused on the RGB 

tracking domain [60]. As above mentioned, RGB-based modality 
tracking still faces challenges in complex scenarios due to the limited 
spectral bands [8,9]. Compared with the above works, the proposed 
SENSE focuses on the hyperspectral video object tracking domain. It can 
exploit the abundant material information and model the maneuvering 
of hyperspectral objects to ensure accurate object position, velocity, and 
scale, simultaneously. 

2.2. HS video tracking 

The HS data, with its abundance of spectral information, holds 
inherent advantages over RGB data in object tracking within complex 
scenarios. Several promising HS trackers have been proposed. Early ef-
forts mainly focus on the generative paradigm, involving the construc-
tion of a model to represent the object and the retrieval of a region 
similar to the model’s description. For example, [61] employs the mean 
shift [62] method for HS object tracking. Inspired by RGB tracking 
paradigms, recent HS trackers predominantly inherit discriminative 
correlation filters and Siamese networks. Notably, certain HS trackers, 
such as MHT [19], TSCFW [24], TASSCF [25], MFI [63], and CNHT 
[64], are modeled on correlation filters and aim to leverage full band 
information of HS data. TSCFW [24] explores tensor processing to 
mitigate spectral differences in homogeneous backgrounds and in-
tegrates sparse regularization terms and context-aware information into 
the correlation filter. Meanwhile, MFI [63] integrates HOG and deep 
features extracted by the pre-trained VGG-19 [65] network into the 
correlation filter, yielding robust tracking results. However, these cor-
relation filter-based HS trackers have achieved limited success despite 
employing hand-crafted and/or deep features. 

As mentioned earlier, the robust feature is the basis for reliable 
tracking, while the appropriate model determines the ceiling of the 
performance. The Siamese network has gained attention in the field of 
HS tracking due to its simplicity and discriminative capabilities when 
compared to traditional correlation filters. Several SOTA HS trackers, 
such as SEE-Net [21], SiamHYPER [8], SiamOHOT [31], CBFF-Net [27], 
SiamBAG [23], SiamHT [40], BRRF-Net [29], SSATFN [66], SPIRIT 
[42], and DT-DBW [67], have incorporated Siamese networks and 
achieved excellent performance, which also provides a certain prior 
exploration for our research. For instance, SiamBAG [23] builds a novel 
band attention grouping-based Siamese framework to address the issue 
of insufficient training data. To preserve the interaction information 
between HS bands, CBFF-Net [27] constructs a bidirectional multiple 
deep feature fusion module and a cross-band group attention module to 
effectively fuse features. 

However, previous research has primarily focused on exploring the 
spatial and spectral information, i.e., the material cue, while over-
looking the significance of the motion cue contained in HS sequential 
frames. Yet, the motion cue is particularly important in scenarios where 
the material cue is unreliable. This article aims to synergize both ma-
terial and motion cues in a unified framework, proposing an HS video 
object tracker with material and motion awareness. 

Fig. 2. Visualization of the abnormal state in terms of occlusion. A person is partially occluded (frame #0147) and fully occluded (frame #0154). It is observed that 
the material cue could be unreliable during occlusion, especially full occlusion. In this case, the motion cue contained in sequential frames can contribute to the 
continuous tracking. The current frame and object state are marked in the top-left corner, and the yellow box region is enlarged for visibility. 
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3. Method 

The proposed method will be described, mainly including the overall 
architecture, spectral-spatial self-expression module, cross-false modal-
ity fusion module, motion awareness module, and training and loss. 

3.1. Overall architecture 

As shown in Fig. 3, the proposed HS tracker consists of five modules: 
SSSE module, feature extraction module, CFMF module, prediction 
module, and MA module. The novelty of this paper is that we investigate 
how to mine abundant physical material cues and motion cues of 
hyperspectral video objects and fuse complementary cues into a unified 
tracking framework. First, we crop the search patch and template patch 
from the HS image which are then fed into the spectral-spatial self- 
expression network of the SSSE module. This module generates com-
plementary false modalities with varying contributions, effectively 
bridging the band gap. Subsequently, the search and template patches of 
sorted false modalities are forwarded to the feature extraction module 
for feature extraction and depth-wise correlation. To obtain a robust 
object representation, the CFMF is proposed to aggregate the 
differential-common features that are further enhanced by transformer- 
like attention. In the prediction module, the material cue of the object is 
classified and regressed to produce corresponding response maps. These 
maps are fed into the proposed MA module that comprises an awareness 
selector and a motion prediction scheme. The awareness selector acts 
like a tracker switcher that helps determine the reliability of the 
appearance tracker and motion tracker (i.e., material cue and motion 
cue). Whereas the motion prediction scheme allows to deal with 
abnormal states and achieve continuous tracking of the object of 
interest. 

3.2. Spectral-spatial self-expression module 

To bridge the band gap, we propose the SSSE module, which adap-
tively converts an HS patch into complementary false modalities, as 
shown in Fig. 4. Inspired by the HS self-expression model, the SSSE 
module inherits the learning-to-optimize fashion to solve the self- 
expression coefficient matrix, ultimately yielding multiple false modal-
ities. For a given HS video, each frame X is represented as X = [x1,x2, ⋯,

xB] ∈ RD×B, where D = M × N denotes the number of pixels, B is the 
band number, and xi ∈ RM×N represents the i-th band of X. The objective 
of the SSSE module is to evaluate the band contributions and divide the 
HS patch into complementary false modalities. 

In the field of HS band clustering, the self-expression model is 
commonly utilized to select a series of HS bands from the original band 
set, such that each band can be reconstructed by the remaining bands 
and itself via the self-expression matrix [68]. Correspondingly, the SSSE 

module aims to solve the coefficient matrix. Considering the Gaussian 
noise, the self-expression model of all band vectors X can be mathe-
matically expressed by: 

argmin ‖ C‖1,2, s.t., X = XC + E, (1)  

where E ∈ RD×B is the residual matrix. C ∈ RB×B denotes the coefficient 
matrix with diag(C) = 0 to eliminate the trivial solution that each band 
is simply represented by itself. Notably, the i-th row, j-th column, and (i,
j)-th element of C are denoted by ci, cj, and cij, respectively. ‖ C‖1,2 =
∑B

i=1‖ci‖2 indicates the sum of l2-norm of all row vectors. Moreover, C ≥

0 ensures that each nonzero item of cj denotes the band probability when 
repressing xj, and the cij is constrained by: 

∑B

i=1
cij = 1, ∀j. (2) 

To efficiently solve the self-expression model, the Eq. (1) can be 
written as: 

argminC
λ
2
‖ C‖1,2 +

1
2
‖ X − XC ‖

2
F, s.t., diag(C) = 0, (3)  

where ‖ ⋅ ‖F means the Frobenius norm, λ > 0 is the regularization 
weight to control the sparsity of C. 

To circumvent expensive iterative optimization processes, the 
learning-to-optimize fashion has been validated by [21]. However, [21] 
primarily emphasizes spectral dimension features and neglects to 
consider the spatial relationship between the object pixels and neigh-
boring pixels. Therefore, we absorb the learning-to-optimize fashion to 
train a deep HS optimizer (SSSE module) to compute the coefficient 
matrix C with consideration of both spectral and spatial dimensions. 
SSSE module consists of an encoder and a decoder connected in cascade, 
as shown in Fig. 4. To be specific, the encoder comprises a spectral 
network to first extract spectral features of each pixel and a spatial 
network to capture spatial features from neighboring pixels. On the 
other hand, the decoder comprises a multi-layer perceptron (MLP) for 
obtaining the coefficient matrix and a band ranking mechanism for 
generating complementary false modalities. The encoder is capable of 
capturing spectral and spatial features from the HS patch, which can be 
combined with the decoder and downstream tasks for end-to-end 
training. Detailed descriptions of the encoder and decoder will be pre-
sented below. 

Concerning the encoder, the spectral network (Fig. 4) emphasizes the 
channel dimension information and highlights the spectral features of 
each HS pixel, which can be derived by: 

Xspe = δ(B (Conv2(δ(B (Conv1(X)))))), (4)  

where Xspe ∈ RM×N×4B represents the extracted spectral feature, X = [x1,

Fig. 3. Overall architecture of the proposed SENSE hyperspectral tracker.  
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x2, ⋯, xB] ∈ RM×N×B denotes the HS patch reshaped from the afore-
mentioned X ∈ RD×B, Conv1 and Conv2 are two normal convolutions 
with kernel size and stride of 1 × 1 and 1, B is the batch normalization 
(BN), and δ is the Rectified Linear Unit (ReLU) activation. 

For further digging out the spatial information of neighboring pixels, 
Xspe is fed to the spatial network by: 

Xspa = δ
(
B

(
Conv4

(
δ
(
B

(
Conv3

(
Xspe

))))))
, (5)  

where Xspa ∈ RM×N×2B denotes the resulting spectral-spatial feature, 
Conv3 and Conv4 are two normal convolutions with a kernel size of 3 ×
3, a stride of 1, and a padding of 1 to maintain the feature size. The 
encoder captures spectral-spatial features from the channel and spatial 
dimensions. 

For the decoder, an MLP is first applied to decode the encoded 
spectral-spatial features for generating the coefficient matrix. Subse-
quently, the accumulative contributions of each HS band are computed 
to facilitate the adaptive grouping of HS patches into complementary 
false modalities. Specifically, the decoding process is implemented by 
the MLP layer to ensure efficiency and full interaction with deep se-
mantic information: 

Y = σ
(

FC2

(
σ
(

FC1

(
X′

spa

))))
(6)  

where X′
spa represents the flattened result of Xspa, FC1 and FC2 denote two 

fully connected layers, σ is the Hyperbolic Tangent (Tanh) activation 
and Y ∈ R(M×N)×B is the attention matrix of X′

spa. We then obtain the self- 
expression coefficient matrix C = YTY. Matrix C = [c1, c2, …, cB] ∈ RB×B 

inherently reveals the interdependence among spectral bands. For an 
arbitrary spectral band xi, it can be reconstructed by embedding ci from 
remaining (including itself) bands. Intuitively, the more important a 
band is, the larger the coefficient tends to be provided by its embedding 
ci. Hence, we can select a subset of important bands by matrix C. 
Thereafter, all bands are ranked in descending order according to their 
accumulative contributions. As defined earlier, ci (the i-th row of C) 
signifies the contribution of the i-th band to the reconstruction. While cj 

(the j-th column of C) stands for the coefficient for reconstructing the j-th 
band using the remaining HS bands. To acquire the accumulative 
contribution, we first normalize C along the column direction by: 

ĉj =

⃒
⃒cij

⃒
⃒

‖ cj‖2
, ∀i, (7)  

where ̂cj denotes the normalization result of the j-th column of matrix C. 
Then, the accumulative contribution is obtained by: 

zi=‖ĉi
‖2, (8)  

where ̂ci denotes the normalization result of the i-th row of matrix C, zi ∈

R1×1 is the accumulative contribution of the i-th band, Z = [z1, z2,⋯,

zB] ∈ RB×1 indicates the desired cumulative contributions for each HS 
band. Fig. 5 shows the standard deviation derived from Z. It is noticed 
that the standard deviation is always greater than zero in each video, 
indicating the acquisition of a set of false modalities with varying Z. In 
addition, the standard deviation varies across different videos and 
frames, implying the adaptive variation of Z. Fig. 6 displays the accu-
mulative contributions Z of each band in four sample frames, while 
Fig. 7 depicts the generated complementary false modalities of sample 
frames. As can be observed, these false modalities exhibit fewer 
continuous bands with relatively sparse distribution. 

Upon the fact that neighboring bands are highly correlated, less 
redundancy would be contained in generated false modalities. Based on 
Z, we first rank all bands and then create K = int(B /3) false modalities 
Q = [q1, q2,⋯, qK] by grouping adjacent bands, where qi ∈ RM×N×3 rep-
resents the i-th false modality. The contribution of each false modality is 
derived by summing the accumulative contributions of all bands and 
dividing by the number of bands. Finally, we can get all false modalities 
Q = [q1, q2,⋯, qK] (Fig. 7) and their contributions W = [w1, w2, ⋯,

wK] ∈ RK×1. 
Notably, the proposed SSSE module is trained in an end-to-end 

fashion and propagates information from the downstream tracking 
task to the learning of band contributions. As a result, the information 
learned from the tracking task is also propagated backward to facilitate 

Fig. 4. Structure of the proposed SSSE module. The input is an HS patch while the output are false modalities. The encoder comprises a spectral network to capture 
spectral features, and a spatial network to provide complementary spatial features. The decoder consists of a multi-layer perceptron for generating the coefficient 
matrix and a band ranking for adaptively grouping K false modalities. B denotes the number of channels. 
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the evaluation of band contributions, which allows the SSSE module to 
adapt to the tracking task rather than just benefiting from the self- 
expression model. 

3.3. Cross-false modality fusion module 

HS images record continuous spectral information rather than the 

Fig. 5. Standard deviation derived from Z. In each subplot, the horizontal axis denotes the frame index, and the vertical axis is the standard deviation. (a) ball. (b) 
basketball. (c) book. (d) campus. (e) card. (f) face. (g) face2. (h) rubik. (i) trucker. (j) worker. 

Fig. 6. Visualization of the accumulative contribution Z in four sample frames (#0011, #0034, #0046, and #0065). The horizontal axis indicates the band with a 
total of 16 bands. 

Fig. 7. Visualization of generated false modalities of sample frames in basketball video. (a) #0011. (b) #0034. (c) #0046. (d) #0065. The band and tracked object are 
marked in the top-left corner and the green bounding box, respectively. 
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monochromatic or color information of objects. Spectral information 
provides a detailed characterization of the material composition, 
enhancing the capability to discriminate among objects. In the SSSE 
module, the HS image is adaptively partitioned into false modalities that 
describe the complementary (i.e., differential and common) material 
features from distinct spectral perspectives. Therefore, a CFMF module 
(Fig. 3) is proposed to aggregate and enhance these false modality fea-
tures. The details of the CFMF module will be presented including the 
differential-common feature aggregation and transformer enhancement 
fusion. 

3.3.1. Differential-common feature aggregation 
In this section, the differential and common features across false 

modalities are adaptively extracted and aggregated. As mentioned 
above, the SSSE module can group HS image X = [x1, x2, ⋯, xB] ∈

RM×N×B into false modalities Q = [q1, q2,⋯, qK] with the contribution of 
W = [w1, w2, ⋯, wK]. W not only records the significance of false mo-
dalities in composing the HS data but also reflects their influence on the 
downstream task. Therefore, W can be regarded as the initial weight for 
fusing these false modality features, enabling effective information 
extraction from limited HS data. In the beginning, the original false 
modalities are fed to the feature extraction module to generate semantic 
features, which are input into the CFMF module. After a bottleneck layer 
(Fig. 3), we can obtain the initial weighted features of false modalities: 

U =
wiφ(qi)
∑K

i=1wi
, i = 1, 2, …, K, (9)  

where qi ∈ RM×N×3 is the i-th false modality, wi denotes the contribution 
of qi, φ(⋅) is the feature extraction operation, K is the number of false 
modalities and U = [u1, u2,⋯, uK] is the initial weighted result of the 
CFMF module. ui ∈ RM′×N′×K′ is the i-th feature of U corresponding to qi. 
Specifically, a 16-band HS image is divided into five false modalities and 
weighted features, i.e., K = 5 and U = [u1,u2,u3,u4,u5]. 

As discussed above, these false modalities describe the differential 
and common material features, which are beneficial for robust object 
representations. To dig out differential modality features, the difference 
map (Fig. 8) is first obtained by performing the absolute difference 
operation: 

L = ||||u1 − u2| − u3| − u4| − u5|, (10)  

where |⋅ − ⋅| stands for the element-wise absolute difference operation to 
guarantee that difference features are non-negative and meaningful, and 
L ∈ RM′×N′×K′ denotes the difference map. To reveal inter-channel de-
pendencies and embed the global information of the difference feature, 
the channel attention is introduced, as shown in Fig. 8. More concretely, 

the spatial context descriptor G is first generated by squeezing the spatial 
dimensions of difference features using global average pooling (GAP): 

G =
1

M′ × N′

∑M′

i=1

∑N′

j=1
L(i, j), (11)  

where M′ and N′ indicate the size of L. G ∈ RK′×1 represents the spatial 
texture descriptor that is passed forward to two fully connected layers 
with ReLU activation to create the attention vector A = [a1,a2,a3,a4,a5]. 
ai ∈ RK′×1 stands for the channel weight of the i-th false modality feature 
ui, as presented in Fig. 8. Mathematically, the operation process can be 
represented by: 

A = ξ(δ(FC4(δ(FC3(G))))), (12)  

where FC3 and FC4 are two fully connected layers, and ξ integrates the 
post-processing operations including the reshape, softmax, and chunk 
operations. The i-th differential modality feature u′

i ∈ RM′×N′×K′ is 
computed by u′

i ⊗ ui, where ⊗ denotes the element-wise multiplication 
operator. Finally, we can obtain five sets of differential modality fea-
tures Ud = [ud

1,ud
2,ud

3,ud
4,ud

5]. 
The differential modality feature Ud reflects the difference informa-

tion while ignoring the common information among modalities. To this 
end, the common modality features are further exploited as comple-
mentary information for robust object representations. 

Let L′ ∈ RM′×N′×K′ denote the commonality map that is obtained by 
performing the addition operation between U: 

L′ = u1 ⊕ u2 ⊕ u3 ⊕ u4 ⊕ u5, (13)  

where ⊕ denotes the element-wise summation. 
After obtaining L′, the subsequent operations are similar to the 

acquisition of differential modality features, and we can obtain the 
common modality features Uc = [uc

1,uc
2,uc

3,uc
4,uc

5]. 
Inspired by the concept of residuals, the complementary (i.e., dif-

ferential and common) features are added to the original features, 
thereby enhancing the stability of the network and being capable of 
obtaining remote context representations. The process is achieved by: 

F = Ud ⊕ Uc ⊕ U, (14)  

where F = [f1, f2, f3, f4, f5] denotes the aggregated differential-common 
feature with fi = ud

i ⊕ uc
i ⊕ ui. 

3.3.2. Transformer enhancement fusion 
Aggregating and enhancing different modal information presents a 

critical challenge when working with complementary false modalities. 
To address this challenge, the differential-common feature aggregation 
part has implemented adaptive aggregation of false modalities. 
Furthermore, we strive to achieve self-enhancement of ffuse to obtain 
more robust object representations. To accomplish this goal, the 
transformer-like attention mechanism is introduced in the CFMF mod-
ule. Fig. 9 shows the structure of the proposed transformer enhancement 
fusion. It takes the aggregated feature F = [f1, f2, f3, f4, f5] as input and 
performs summation by Ffuse = f1 ⊕ f2 ⊕ f3 ⊕ f4 ⊕ f5 ∈ RM′×N′×K′. Then, 
Ffuse are converted into three vectors including query, key, and value. 
The transformer self-attention weight matrix is produced from the query 
and key and is then multiplied by the value. Following a fully connected 
layer, the output is summed with the original input. The transformer 
self-attention is repeated to get enhanced features. Formulaically, the 
operation is expressed as 

B̂ = FC6
(
Attention1

(
FC5

(
Conv6

(
δ
(
Conv5

(
Ffuse

))))))
⊕ Ffuse, (15)  

B = FC8(Attention2(FC7(B̂))) ⊕ B̂, (16) 
Fig. 8. Structure of the proposed differential feature mining network.  
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where B̂ and B denote the intermediate result and final enhanced 
feature, respectively. FC5 and FC7 are responsible for dimension 
reduction and generation of the query, key, and value. FC6 and FC8 is 
used to raise the feature dimension. Attention1 and Attention2 refer to two 
transformer self-attentions. For each transformer-like attention, it takes 
the query, key, and value as input and the weighted sum of values as 
output. The weight assigned to the value is derived by performing the 
softmax operation of the scaled dot products between the query and key. 
The attention is formulated as 

Attention(Q ,K ,V ) = softmax
(

Q K
T

̅̅̅̅̅
dk

√

)

V (17)  

where matrices Q , K , and V denote query, key of dimension dk, and 
value, respectively. In summary, the CFMF module can achieve 
differential-common feature aggregation and transformer enhancement 
fusion. 

3.4. Motion awareness module 

The motion cue plays a vital role in HS video object tracking, espe-
cially when the material cue is unreliable, as shown in Fig. 3. At this 
point, we can model the maneuvering of the tracked object depending 
on the historical state [69]. Towards this end, the simultaneous use of 
appearance and motion cues is explored for HS video object tracking. 
For each frame of the video, we use motion cues to predict the initial 
position of the object followed by integrating appearance cues to search 
for the accurate position. However, the results are unsatisfactory 
compared to the fashion of using the awareness selector. This may be 
because appearance cues are more dominant than motion cues and 
usually play a prominent role in anomalous states such as occlusion. 
However, object anomalies are usually less. Therefore, we propose an 
awareness selector to determine the reliability of material and motion 
cues as done in [52] and [70]. To continuously track an object under 
abnormal states, an HS tracker is expected to possess the following 
capabilities.  

• Awareness of interference: A tracker needs to be aware of the 
occurrence of object interference.  

• Handling of interference: When the object is in an abnormal state, 
ensure that the tracker does not lose it.  

• Awareness of the end of interference: A tracker can be aware of the 
end of object interference. 

However, current HS trackers focus little on the motion cue con-
tained in sequential frames. In this work, we propose to combine the 
material and motion cues into a unified tracking framework and design a 
motion awareness module to handle abnormal states. The motion 
awareness module comprises an awareness selector to determine which 
cue (i.e., material or motion) is reliable and a motion prediction scheme 
to predict the position, velocity, and scale of the tracked object, handling 
abnormal states. 

3.4.1. Awareness selector 
In the proposed method, we jointly exploit the material and motion 

cues for tracking. Empirically, the material cue is more discriminative 
than the motion cue in most cases. Whereas, it is difficult to use the 

material cue for localization when the object is in an abnormal state 
(Fig. 2). Therefore, we design the awareness selector to determine which 
cue is more reliable and suitable for tracking the current object. The 
awareness selector is achieved by evaluating the proposed tracking 
confidence TC of the response map obtained from the material cue 

TC =
RMmax|RMmax − RMmin|

2

mean
( ∑H

i=1(RMi − RMmin)
2), (18)  

where RMmax and RMmin indicate the maximum and minimum values of 
the response map RM, respectively, and H is the number of pixels of RM. 
This is because peaks and fluctuations of response maps can reveal the 
confidence of tracking results. When the detected result is well-matched 
to the correct object, the ideal response map should have only one sharp 
peak, and all other areas should be smooth. The sharper the correlation 
peak, the higher the localization precision. Otherwise, the entire 
response map will fluctuate violently with significant pattern differences 
from the normal response map. Inspired by this, the peak value and 
average peak-to-correlation energy of the response map are proposed to 
explore a tracking confidence feedback mechanism. Fig. 10 shows the 
TC value during tracking, in which the larger the TC, the more reliable 
the material cue. It can be observed that TC decreases significantly when 
the material cue is unreliable. Therefore, we can determine whether to 
activate the motion prediction scheme or not by comparing TC with the 
threshold τ. 

3.4.2. Motion prediction scheme 
The motion prediction scheme will be activated when TC is smaller 

than τ. Since the sampling interval between every two frames is short, 
we can assume that the object exhibits uniform linear motion and 
maintains a constant scale variation. Guided by the Kalman filter [43], a 
motion prediction scheme is proposed to simultaneously predict the 
center position, velocity, and scale of the tracked object. Let Sk =

[xk, yk,wk, hk, vx
k, v

y
k, v

w
k , v

h
k]

T stand for the state vector at frame k, where 
(xk, yk) and (wk, hk) are the center coordinates and the width-height, and 
(vx

k, v
y
k) and (vw

k , v
h
k) denote the object’s velocity of motion and scale 

variation in horizontal and vertical directions. The proposed motion 
prediction scheme involves two stages, i.e., prediction and updating. In 
the prediction stage, the state and error transformation equations are 

Ŝk = MŜk− 1 + Duk− 1, (19)  

Ek = MEk− 1MT + Qk, (20)  

where Ŝk is a prior state estimation at frame k, Ŝk− 1 is the posterior state 
estimation at frame k − 1, D indicates the control matrix, uk− 1 is the 
control vector with covariance matrix Q, Ek is the prior estimation of the 
error matrix, and M denotes the state transformation matrix with 

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21) 

Fig. 9. Structure of the proposed transformer enhancement fusion network.  
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The observation equation can be expressed by 

Zk = HSk + Vk, (22)  

where Zk denotes the observation vector, and Vk is noise with covariance 
matrix R. H ∈ R4×8 is the observation matrix 

H =

⎡

⎢
⎢
⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0

⎤

⎥
⎥
⎦. (23) 

In the updating stage, we apply the observation vector Zk to correct 
the prior estimation ̂Sk with errors, obtaining the posterior estimate ̂Sk at 
frame k. The main process can be expressed as follows 

Kk =
EkHT

HEkHT + Rk
, (24)  

Ŝk = Ŝk + Kk(Zk − HŜk), (25)  

Ek = (I − KkH)Ek, (26)  

where Ŝk is the desired posteriori state vector corrected by Zk, I is the 
identity matrix, and Kk stands for the gain matrix. It is worth noting that 
the motion prediction scheme is not updated when the motion cue is 
selected to determine final outputs due to the absence of actual mea-
surements. Otherwise, the material cue will be considered as actual 
measurements to update the scheme, ensuring accurate object position, 
velocity, and scale. 

3.5. Training and loss 

3.5.1. Training 
Due to the limited HS training samples, the effectiveness of the 

designed network would be unsatisfactory when initialized randomly. 
For this reason, the feature extraction and prediction modules are 
initialized with parameters provided by [32] and remain frozen. While 
the spatial-spectral self-expression module and cross-false modality 
fusion module are trained from scratch, without a pre-trained model, 
and the motion awareness module is executed in the inference process. 

3.5.2. Loss 
The proposed method is trained with multi-task loss, as follows 

L total = γ1L rec + γ2L reg + γ3L cls + γ4L cen, (27)  

where L rec stands for the reconstruction loss, L reg denotes the regres-
sion loss of the bounding box, L cls is the cross-entropy loss for classi-
fication, L cen is the center-ness loss for estimating the localization 
quality. 

Constants γ1, γ2, γ3, and γ4 weight the reconstruction loss, regression 
loss, classification loss, and center-ness loss. For the L rec, it is obtained 
by 

L rec =
1
2
(
L

tem
rec + L

sea
rec

)
, (28)  

where L tem
rec and L sea

rec stand for the loss of the self-expression model for 
the template and the search region. 

For instance, the loss L sea
rec is measured by the mean squared error 

Fig. 10. Visualization of TC illustrated by the forest video. The larger the TC, the more reliable the material cue. The first row shows the video frame with the yellow- 
boxed region zoomed in. The second row displays the confidence curve with the red dashed line indicating the threshold τ. The third line exhibits corresponding 
response maps. As can be observed, the material cue is unreliable at frame #0279 due to the occlusion. In this case, the response map tends to be flat and multi- 
peaked distribution, resulting in a low TC value. Therefore, we can determine whether the object is in an abnormal state according to TC. 
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L
sea
rec =

∑B

i=1
‖x̂i − xi‖

2, (29)  

where B is the number of bands, and x̂i and xi are the i-th band of the 
reconstruction result and ground truth. 

As shown in Fig. 3, the tracking task is divided into two subtasks, i.e., 
the classification task that predicts the category of each location and the 
regression task that computes the object bounding box for that location. 
Specifically, the classification branch and regression branch output the 
classification feature map Acls ∈ Rw×h×2 and regression feature maps 
Areg ∈ Rw×h×4, where w and h refer to the width and height of the 
extracted feature maps, respectively. Furthermore, each point (i, j, : ) in 
Acls is a 2D vector representing the foreground and background scores at 
the corresponding position of the search region. 

Similarly, each point (i, j, : ) in Acls is a 4D vector t(i, j) = (l, t, r, b)
indicating the distance from the corresponding position to the four sides 
(i.e., left, top, right, and bottom) of the box in the search region. Thus, 
we can train the tracker using cross-entropy loss for classification and 
intersection over union (IoU) loss for regression. 

Let (xlt , ylt) and (xrb, yrb) represent the upper-left and right-bottom 
corner positions of the ground truth, respectively. And the (x, y) is the 
corresponding position of points (i, j) in the search region. Then, the 
regression object o(i,j) at Areg is obtained by 

ôl
(i,j) = l̂ = x − xlt, ôt

(i,j) = t̂ = y − ylt,

ôr
(i,j) = r̂ = xrb − x, ôb

(i,j) = b̂ = yrb − y,
(30)  

where symbol ⋅̂ denotes the predicted value. After obtaining ô(i,j), we 
could calculate the IoU between the predicted box and ground truth and 
get the regression loss L reg 

L reg =
1

∑
I
(

ô(i,j)
)
∑w

i=1

∑h

j=1
I
(

ô(i,j)
)
L iou

(
Areg(i, j, : ), ô(i,j)

)
, (31)  

where L iou and I(⋅) denote the IoU loss and indicator random variable 
that is 

I
(

ô(i,j)
)
=

{
1 if ∀(̂l, t̂, r̂, b̂) > 0

0 otherwise.
(32) 

The object’s center plays an important role in determining the 
bounding box, and the farther the prediction location is from the center, 
the lower the quality of the resulting prediction box [32]. To attenuate 
this problem, a center-ness algorithm is imposed to improve the locali-
zation quality by producing the center-ness feature map Acen ∈ Rw×h×1. 
Each point (i, j, : ) in Acen records the center-ness score CS(i, j) of the 
corresponding position in the search, and CS(i, j) is computed by 

CS(i, j) = I
(

ô(i,j)
)
∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

min(̂l, r̂)
max(̂l, r̂)

×
min(̂t, b̂)
max(̂t, b̂)

.

√

(33) 

The score CS(i, j) is up to one when the distance between the object 
center and the corresponding position (x, y) is zero, i.e., ̂l = r̂, ̂t = b̂, and 
I(ô(i,j)) = 1. The larger the distance, the lower the score CS(i, j). While 
the center-ness loss L cen is defined as 

4. Experimental results and analysis 

4.1. Data 

SENSE is trained and tested on HS datasets [19] provided by the 
Hyperspectral Object Tracking Competition (HOTC), which comprises 
40 groups of training data and 35 groups of testing data. Each group of 
data consists of three types of videos with a frame rate of 25 frames per 
second (FPS), namely HS video, false color video, and RGB video, with 
16, three, and three bands, respectively. The false color video is gener-
ated from the corresponding HS video, while the RGB video is captured 
from a viewpoint close to the HS video. Consequently, ground truth 
labels are shared between HS and false color videos, whereas labels for 
RGB videos are generated independently. There are 11 fine attributes 
including background clutter (BC), deformation (DEF), fast motion 
(FM), in-plane rotation (IPR), illumination variation (IV), low resolution 
(LR), motion blur (MB), occlusion (OCC), out-of-plane rotation (OPR), 
out-of-view (OV), and scale variation (SV). In addition, frame-level 
annotation with horizontal bounding boxes is used for evaluation. 

4.2. Implementation detail 

The proposed method is implemented in Python with PyTorch and 
trained on an RTX 4060 card. The initial Siamese network [32] is trained 
with RGB datasets from YouTube-BB [71], ImageNet-VID, Image-
Net-DET [37], and COCO [72]. Then, it is further trained on the HOTC 
HS dataset using the stochastic gradient descent optimizer with an initial 
learning rate of 0.001. The batch size is set to 16, and a total of 20 epochs 
are executed during the training process. For multi-task loss weight, γ1, 
γ2, γ3, and γ4 are empirically set to 1.2, 3.0, 1.0, and 1.0, respectively. 
While τ is set to 29.0. The training sample pairs are of sizes 
255×255×16 and 127×127×16 pixels, respectively. 

4.3. Assessment metric 

We employ both precision and success plots to measure the perfor-
mance of trackers in one-pass evaluation [73]. The precision plot dis-
plays the percentage of frames whose center location error v is less than 
thresholds varied from 1 to 50 pixels, and v is defined as 

v =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − X)2
+ (y − Y)2

√

, (35)  

where (x, y) and (X,Y) represent the center of the predicted bounding 
box rt and the ground truth rg, respectively. In the success plot, the 
success rate aims to calculate the percentage of successful frames where 
the overlap score s surpasses thresholds varied from 0 to 1. Given rt and 
rg, s can be computed by 

s =
|rt ∩ rg|

|rt ∪ rg|
, (36)  

where ∪ and ∩ are union and intersection operators, and |⋅| stands for the 
number of pixels in a given region. The trackers are ranked by the 
precision at 20 pixels of the precision plot and the area under the curve 
of the success plot, i.e., Pre and Suc, respectively. While FPS is used to 
measure the running speed. 

L cen =
− 1

∑
I
(

ô(i,j)
)

∑

I(ô(i,j))==1

CS(i, j) ∗ logAcen(i, j) + (1 − CS(i, j)) ∗ log(1 − Acen(i, j)). (34)   
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4.4. Comparison with RGB trackers 

4.4.1. Hand-crafted feature-based trackers 
We compare the SENSE with 13 hand-crafted feature-based SOTAs 

including CSK [74], CN [75], SAMF [76], DAT [77], KCF [4], SRDCF 
[78], Staple [79], DSST [80], BACF [81], CSRDCF [82], STRCF [83], 
ARCF [84], and AutoTrack [85]. SENSE is evaluated on HS videos, while 
the others are tested on RGB videos and false color videos. Table 1 de-
tails the results and characteristics of trackers. Fig. 11 presents the 

precision and success plots tested on RGB videos. As evident in Table 1 
and Fig. 11, SENSE obtains the optimal results with a Pre of 0.952 and a 
Suc of 0.690. Compared to STRCF, SENSE exhibits improvements in Pre 
and Suc by 12.3% and 12.1%, respectively. Compared to SRDCF and 
ARCF, SENSE achieves impressive improvements in Suc of 12.2% and 
12.6%, respectively. The results highlight the potential of leveraging 
material and motion cues in synergistic ways. It is conceivable to adapt 
the RGB tracker to HS video by converting the HS video into a false color 
video. Naturally, we conduct experiments on the false color video, and 

Table 1 
Parallel comparison with RGB trackers listed in chronological order. The top three scores are bolded.  

Tracker Venue Feature/Backbone RGB FAC/HS PreD SucD 

Pre Suc Pre Suc 

CSK [71] ECCV 2012 I 0.575 0.331 0.615 0.343 -4.0% -1.2% 
CN [72] CVPR 2014 CN+I 0.646 0.380 0.643 0.379 0.3% 0.1% 
SAMF [73] ECCV 2015 HOG+CN+I 0.693 0.418 0.660 0.388 3.3% 3.0% 
DAT [74] CVPR 2015 CH 0.647 0.394 0.542 0.327 10.5% 6.7% 
KCF [4] TPAMI 2015 HOG 0.613 0.377 0.586 0.358 2.7% 1.9% 
SRDCF [75] ICCV 2015 HOG 0.846 0.568 0.830 0.554 1.6% 1.4% 
Staple [76] CVPR 2016 HOG+CN 0.801 0.518 0.770 0.507 3.1% 1.1% 
DSST [77] TPAMI 2017 HOG+I 0.776 0.504 0.731 0.480 4.5% 2.4% 
BACF [78] ICCV 2017 HOG 0.793 0.533 0.819 0.544 -2.6% -1.1% 
CSRDCF [79] IJCV 2018 HOG+CN+CH 0.870 0.563 0.833 0.533 3.7% 3.0% 
STRCF [80] CVPR 2018 HOG+CN 0.829 0.569 0.838 0.568 -0.9% 0.1% 
ARCF [81] ICCV 2019 HOG+CN+I 0.818 0.564 0.798 0.542 2.0% 2.2% 
AutoTrack [82] CVPR 2020 HOG+CN+I 0.831 0.534 0.818 0.534 1.3% 0.0% 
ECO [83] CVPR 2017 VGG-M 0.872 0.577 0.834 0.556 3.8% 2.1% 
DaSiamRPN [84] ECCV 2018 AlexNet 0.878 0.622 0.850 0.575 2.8% 4.7% 
DiMP [85] ICCV 2019 ResNet-50 0.944 0.641 0.836 0.556 10.8% 8.5% 
SiamRPN++ [86] CVPR 2019 ResNet-50 0.912 0.653 0.847 0.591 6.5% 6.2% 
UpdateNet [87] ICCV 2019 AlexNet 0.863 0.595 0.833 0.551 3.0% 4.4% 
PrDiMP [88] CVPR 2020 ResNet-50 0.917 0.634 0.829 0.565 8.8% 6.9% 
SiamBAN [89] CVPR 2020 ResNet-50 0.853 0.610 0.863 0.587 -1.0% 2.3% 
SiamFC++ [90] AAAI 2020 AlexNet 0.931 0.673 0.836 0.577 9.5% 9.6% 
KeepTrack [91] ICCV 2021 ResNet-50 0.951 0.656 0.900 0.617 5.1% 3.9% 
SiamGAT [92] CVPR 2021 GoogLeNet 0.889 0.649 0.820 0.576 6.9% 7.3% 
LightTrack [93] CVPR 2021 Custom 0.814 0.593 0.761 0.530 5.3% 6.3% 
Stark [94] ICCV 2021 ResNet-50 0.900 0.637 0.814 0.579 8.6% 5.8% 
RTS [95] ECCV 2022 ResNet-50 0.953 0.612 0.905 0.568 4.8% 4.4% 
SiamCAR [32] IJCV 2022 ResNet-50 0.882 0.636 0.846 0.586 3.6% 5.0% 
OSTrack [34] ECCV 2022 ViT-Base 0.910 0.662 0.869 0.620 4.1% 4.2% 
SimTrack [96] ECCV 2022 ViT-Base 0.925 0.664 0.852 0.602 7.3% 6.2% 
SBT [97] CVPR 2022 SBT-Base 0.938 0.677 0.866 0.626 7.2% 5.1% 
GRM [98] CVPR 2023 ViT-Large 0.921 0.671 0.892 0.648 2.9% 2.3% 
SeqTrack [99] CVPR2023 ViT-Base 0.917 0.643 0.856 0.594 6.1% 4.9% 
ARTrack [56] CVPR2023 ViT-Base 0.929 0.673 0.899 0.640 3.0% 3.3% 
SMAT [100] WACV 2024 MobileViTv2 0.894 0.637 0.831 0.581 6.3% 5.6% 
SENSE Ours ResNet-50 n/a n/a 0.952 0.690 n/a n/a 

RGB, FAC, and HS represent the red-green-blue, false color, and hyperspectral videos, respectively. PreD and SucD denote the Pre degradation and Suc degradation 
from RGB to false color videos. Trackers using hand-crafted features are shown above the dashed line, while trackers using deep features are presented below the 
dashed line. SENSE is shown at the bottom. n/a stands for not applicable. 

Fig. 11. Comparison with hand-crafted feature-based trackers on RGB videos. (a) Precision plot. (b) Success plot.  
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Fig. 12 and Table 1 report the results. STRCF maintains a respectable 
performance followed by SRDCF with Suc of 0.568 and 0.554, respec-
tively. In contrast, SENSE achieves gains of 12.2% and 13.6%, respec-
tively. This is attributed to the adaptive acquisition of complementary 
false modalities with varying contributions facilitated by the SSSE 
module, which are then aggregated and enhanced by the CFMF module. 
Hence, SENSE adeptly harnesses the abundant spectral information. 
Furthermore, the incorporation of an MA module equips SENSE to 
overcome challenges associated with unreliable material cues during 
abnormal states. Notably, the ranking of the compared trackers remains 
largely consistent with that of the RGB video, besides yielding lower 
results. This discrepancy can be attributed to inherent different spectral 
characteristics between false color and RGB videos, despite sharing 
three bands. Experimental results also underscore the suboptimal nature 
of converting HS video into false color video, as it unavoidably results in 
loss and distortion of crucial material information that is pivotal for 
achieving robust performance. 

4.4.2. Deep feature-based trackers 
In contrast to hand-crafted features, deep features are more 

discriminative and have achieved considerable advances in the RGB 
tracking domain. Here we compare SENSE with 21 deep feature-based 
SOTAs including ECO [86], DaSiamRPN [87], DiMP [88], 
SiamRPN++ [89], UpdateNet [90], PrDiMP [91], SiamBAN [92], 
SiamFC++ [93], KeepTrack [94], SiamGAT [95], LightTrack [96], Stark 
[97], RTS [98], SiamCAR [32], OSTrack [34], SimTrack [99], SBT 
[100], GRM [101], SeqTrack [102], ARTrack [59], and SMAT [103], 
covering a variety of backbones and tracking paradigms. 

Table 1 reports results tested on RGB and false color videos. Precision 

and success plots are shown in Figs. 13 and 14. These trackers are 
tailored for RGB video, therefore, exhibit superior performance in RGB 
compared to false-color videos, and a similar conclusion can be drawn 
from Fig. 15. However, deep feature-based trackers demonstrate a more 
pronounced decline in Suc when transitioning from RGB to false color 
videos compared to trackers that rely on hand-crafted features, as shown 
in Fig. 15. This can be attributed to the significant disparities between 
RGB and false color videos (Fig. 16), with the performance of deep 
trackers highly dependent on the specific characteristics of the training 
data, which is typically in RGB format. Furthermore, it is observed that 
trackers utilizing deep features consistently outperform those utilizing 
hand-crafted features. This can be attributed to the capability of com-
plex networks to learn discriminative and generalized object represen-
tations from massive RGB data. SENSE can learn the rich material cue 
present in HS data and integrate the motion cue, achieving competitive 
results. 

4.5. Comparison with hyperspectral trackers 

Further, we compare SENSE with 16 SOTA HS trackers including 
CNHT [64], DeepHKCF [104], MHT [19], BAE-Net [22], MFI [63], 
SST-Net [28], SiamHYPER [8], TSCFW [24], BAHT [38], TASSCF [25], 
DeepTASSCF [25], SEE-Net [21], SiamOHOT [31], SiamBAG [23], 
SiamHT [40], and SPIRIT [42], covering Siamese network, VITIAL, and 
correlation filter paradigms. Experimental results and characteristics of 
trackers are summarized in Table 2. Fig. 17 shows the precision and 
success plots. For the Pre, SENSE, SiamHYPER, SEE-Net, and SPIRIT 
rank among the top four with scores of 0.952, 0.947, 0.934, and 0.925, 
respectively. For the Suc, SPIRIT, SiamHYPER, SEE-Net, and BAHT 

Fig. 12. Comparison with hand-crafted feature-based trackers on false color videos. (a) Precision plot. (b) Success plot.  

Fig. 13. Comparison with deep feature-based trackers on RGB videos. (a) Precision plot. (b) Success plot.  
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produce competitive outcomes with scores of 0.679, 0.678, 0.666, and 
0.665, respectively, securing the top four positions among compared 
trackers. While SENSE shows satisfactory results surpasses them by 
1.1%, 1.2%, 2.4%, and 2.5%, respectively. Overall, SENSE achieves 
optimal performance in both Pre and Suc, underscoring the potential of 
integrating material and motion cues in HS video object tracking. 

Moreover, Table 2 highlights that the top-ranked trackers usually 
inherit the Siamese network, while the low-ranked trackers adopt the 
correlation filter, indicating that the Siamese network may be superior 
to the correlation filter in HS video object tracking. We can draw a 
similar conclusion in the evolution of the RGB trackers from Table 1. In 
particular, recent works such as SPIRIT, SiamBAG, SEE-Net, and Siam-
HYPER strive to leverage the rich material cue for robust object 
modeling. The ideal has been validated because the abundance of 
spectral information potentially enhances the material awareness of 
trackers. In our approach, the SSSE module enables SENSE to adaptively 

utilize spectral information by generating complementary false modal-
ities with varying contributions. Furthermore, we propose a CFMF 
module to aggregate and enhance the features learned from false mo-
dalities. It is worth noting that current HS trackers often ignore the 
motion cue contained in sequential frames, which can be particularly 
effective when the material cue is unreliable such as occlusion. With this 
in mind, we propose an MA module to enable SENSE to sense and handle 
abnormal states, arousing motion awareness. 

In general, SENSE builds upon the Siamese network and fuses the 
material and motion cues to learn robust object representations while 
modeling object motion and shape, culminating in material and motion 
awareness capabilities. In addition, SENSE can maintain a competitive 
speed of 15.4 FPS. In particular, SENSE, SiamOHOT, and SEE-Net all 
inherit SiamFC, but with significant differences in running speed. This is 
because SiamOHOT places significant emphasis on employing knowl-
edge distillation to refine the model in order to enhance its efficiency. 
SEE-Net uses decision-level fusion to improve effectiveness but results in 
an expensive computational burden. While SENSE incorporates the 
feature-level fusion to improve efficiency, and designs the spectral- 
spatial self-expression module, cross-false modality fusion module, 
and motion awareness module for improving effectiveness. 

4.6. Attribute-based evaluation 

Here, we further perform attribute-based evaluation with 13 HS 

Fig. 14. Comparison with deep feature-based trackers on false color videos. (a) Precision plot. (b) Success plot.  

Fig. 15. Parallel comparisons with RGB trackers using hand-crafted and deep 
features. These trackers are ranked by the Suc tested on RGB videos. The hand- 
crafted feature-based trackers are STRCF, SRDCF, ARCF, CSRDCF, AutoTrack, 
BACF, Staple, DSST, SAMF, DAT, CN, KCF, and CSK, respectively. The deep 
feature-based trackers are SBT, ARTrack, SiamFC++, GRM, SimTrack, OSTrack, 
KeepTrack, SiamRPN++, SiamGAT, SeqTrack, DiMP, SMAT, and Stark, 
respectively. 

Fig. 16. Visualization of RGB data and false color data generated from HS data. 
(a) RGB. (b) False color. 
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Table 2 
Characteristics and results of HS trackers.  

Tracker Venue Framework Feature UFB UMC Pre Suc FPS MOP 

CNHT [60] ICSM 2018 KCF Deep feature ✓ - 0.336 0.171 2.6 CPU 
DeepHKCF [101] TGRS 2019 KCF Deep feature - - 0.543 0.303 0.9 CPU 
MHT [19] TIP 2019 KCF Hand-crafted feature ✓ - 0.883 0.586 2.2 CPU 
BAE-Net [22] ICIP 2020 VITAL Deep feature ✓ - 0.879 0.606 0.5 GPU 
MFI [59] WISP 2021 KCF Deep + Hand-crafted features - - 0.893 0.601 0.4 CPU 
SST-Net [28] WISP 2021 VITAL Deep feature ✓ - 0.917 0.623 0.5 GPU 
SiamHYPER [8] TIP 2022 SiamFC Deep feature ✓ - 0.947 0.678 19.0 GPU 
TSCFW [24] TGRS 2022 KCF Hand-crafted features ✓ - 0.887 0.604 3.4 CPU 
BAHT [38] GRSL 2022 SiamFC Deep feature - - 0.895 0.665 16.0 GPU 
TASSCF [25] CVIU 2022 KCF Hand-crafted features - - 0.870 0.587 16.0 CPU 
DeepTASSCF [25] CVIU 2022 KCF Deep feature - - 0.875 0.602 6.0 CPU 
SEE-Net [21] TIP 2023 SiamFC Deep feature ✓ - 0.934 0.666 8.7 GPU 
SiamOHOT [31] TGRS 2023 SiamFC Deep feature ✓ - 0.884 0.634 38.0 GPU 
SiamBAG [23] TGRS 2023 SiamFC Deep feature ✓ - 0.893 0.632 5.7 GPU 
SiamHT [40] NCA 2023 SiamFC Deep feature - - 0.878 0.620 16.0 GPU 
SPIRIT [42] TGRS 2024 SiamFC Deep feature ✓ - 0.925 0.679 26.0 GPU 
SENSE Ours SiamFC Deep feature ✓ ✓ 0.952 0.690 15.4 GPU 

KCF denotes the kernelized correlation filter [4], VITAL stands for visual tracking via adversarial learning [105], and SiamFC represents the fully convolutional Si-
amese network [5]. UFB denotes the attempt to use of full band. UMC stands for the use of motion cues. MOP is the main operation platform. WISP denotes the 
WHISPERS. 

Fig. 17. Comparison with hyperspectral trackers on hyperspectral videos. (a) Precision plot. (b) Success plot.  

Table 3 
Results of per-attribute and overall in terms of the Pre metric.  

Tracker Venue BC DEF FM IPR IV LR MB OCC OPR OV SV OVE 

CSRDCF [79] IJCV 2018 0.791 0.956 0.758 0.856 0.783 0.820 0.820 0.796 0.865 0.878 0.845 0.833 
STRCF [80] CVPR 2018 0.801 0.964 0.833 0.924 0.848 0.705 0.853 0.812 0.926 0.887 0.834 0.838 
ARCF [81] ICCV 2019 0.740 0.910 0.792 0.899 0.771 0.671 0.799 0.740 0.878 0.887 0.806 0.798 
AutoTrack [82] CVPR 2020 0.759 0.930 0.737 0.882 0.810 0.700 0.827 0.788 0.888 0.891 0.825 0.818 
GRM [98] CVPR 2023 0.873 0.945 0.979 0.974 0.860 0.802 0.966 0.899 0.979 1.000 0.895 0.892 
SeqTrack [99] CVPR2023 0.831 0.935 0.968 0.896 0.809 0.827 0.929 0.860 0.960 0.995 0.883 0.856 
ARTrack [56] CVPR2023 0.875 0.945 0.982 0.985 0.846 0.888 0.976 0.868 0.962 1.000 0.920 0.899 
SMAT [100] WACV 2024 0.761 0.951 0.957 0.871 0.828 0.778 0.959 0.823 0.944 0.891 0.868 0.831 
CNHT [60] ICSM 2018 0.313 0.448 0.403 0.487 0.251 0.127 0.256 0.218 0.419 0.412 0.287 0.336 
DeepHKCF [101] TGRS 2019 0.513 0.636 0.500 0.737 0.304 0.304 0.626 0.439 0.629 0.548 0.501 0.543 
MHT [19] TIP 2019 0.901 0.908 0.774 0.940 0.806 0.827 0.839 0.816 0.893 0.887 0.874 0.883 
BAE-Net [22] ICIP 2020 0.921 0.940 0.871 0.985 0.824 0.740 0.882 0.794 0.982 0.896 0.892 0.879 
MFI [59] WISP 2021 0.929 0.885 0.832 0.952 0.887 0.878 0.841 0.815 0.950 0.928 0.916 0.893 
SST-Net [28] WISP 2021 0.980 0.971 0.835 0.981 0.817 0.746 0.832 0.860 0.980 0.896 0.907 0.917 
SiamHYPER [8] TIP 2022 0.965 0.956 0.993 0.943 0.916 0.983 0.999 0.909 0.943 0.891 0.920 0.947 
TSCFW [24] TGRS 2022 0.907 0.901 0.829 0.956 0.859 0.885 0.853 0.810 0.929 0.896 0.902 0.887 
TASSCF [25] CVIU 2022 0.906 0.914 0.792 0.919 0.873 0.851 0.818 0.781 0.921 0.882 0.870 0.870 
DeepTASSCF [25] CVIU 2022 0.903 0.911 0.794 0.948 0.851 0.839 0.860 0.794 0.949 0.891 0.893 0.875 
SEE-Net [21] TIP 2023 0.959 0.938 0.991 0.983 0.879 0.943 0.981 0.888 0.976 0.891 0.929 0.934 
SiamOHOT [31] TGRS 2023 0.931 0.935 0.816 0.960 0.825 0.781 0.819 0.800 0.959 0.887 0.895 0.884 
SiamBAG [23] TGRS 2023 0.899 0.936 0.883 0.930 0.846 0.839 0.899 0.831 0.906 0.891 0.892 0.893 
SENSE Ours 0.966 0.948 0.992 0.976 0.922 0.946 0.993 0.921 0.971 0.891 0.946 0.952 

The OVE indicates the overall score. 
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trackers including CNHT, DeepHKCF, MHT, BAE-Net, MFI, SST-Net, 
SiamHYPER, TSCFW, TASSCF, DeepTASSCF, SEE-Net, SiamOHOT, and 
SiamBAG and eight RGB trackers including CSRDCF, STRCF, ARCF, 
AutoTrack, GRM, SeqTrack, ARTrack, and SMAT. The RGB trackers are 
tested on false color videos generated from HS videos. 

Tables 3 and 4 show the Pre and Suc scores, and Figs. 18 and 19 
present the precision and success plots, respectively. For the Pre, SENSE 
obtains a top three for seven (i.e., BC, FM, IV, LR, MB, OCC, and SV) out 
of 11 attributes and achieves the first overall (i.e., OVE). For the Suc, 
SENSE obtains a top three for nine (i.e., BC, FM, IPR, IV, LR, MB, OCC, 
OPR, and SV) out of 11 attributes. OCC is a challenging attribute that is 
difficult to be addressed through the material cue alone, particularly in 
full occlusion scenario with unreliable material cues. Benefiting from 
the MA module, SENSE can sense the abnormal state and exploit the 
motion cue to address it. As a result, SENSE obtains the optimal Pre and 
Suc of 0.921 and 0.645, which are 3.3% and 2.3% higher than SEE-Net. 
Moreover, BC is another demanding attribute where the background has 
a similar texture or color as the object. In this attribute, HS trackers such 
as SENSE, SEE-Net, and MFI significantly outperform RGB trackers such 
as GRM, SeqTrack, and ARCF. This is attributed to the capability of HS 
trackers to uncover the rich material cue to discriminate the physical 
material of objects. In particular, SENSE achieves the highest Suc of 
0.721 higher than that of SEE-Net and MFI by 1.6% and 7.0%, respec-
tively, thanks to strong material awareness and additional motion 
awareness capabilities benefitted from the proposed SSSE, CFMF, and 
MA modules. 

Overall, SENSE can combine the material cue with the motion cue to 
achieve superior performance under challenging attributes, validating 
the importance of jointly considering material awareness and motion 
awareness in the HS tracking domain. 

4.7. Visual comparison 

We conduct qualitative comparisons with HS trackers including 
SPIRIT, SiamHYPER, SiamOHOT, DeepHKCF, MHT, and CNHT and RGB 
trackers including STRCF and GRM. Fig. 20 shows qualitative results. In 
the bus2 video, an object encounters the OCC, SV, FM, and IV. CNHT and 
DeepHKCF lose track of the object initially. SiamOHOT, SiamHYPER, 
and GRM struggle to accurately estimate the scale. SENSE demonstrates 
superior performance in locating the object and estimating its scale, due 
to its capability of adaptively generating, aggregating, and enhancing 
complementary false modalities via the SSSE and CFMF modules. In the 

playground video, the occlusion and scale variation problems are sig-
nificant, and the tracked object is surrounded by a similar object, which 
challenges the tracking algorithms. In this scenario, most trackers such 
as SPIRIT, MHT, GRM, and STRCF lose the object to varying degrees. 
Benefitting from the MA module, SENSE can effectively mitigate these 
interferences by fusing the material and motion cues, hence successfully 
locating the object, as shown in frame #0197. In the other cases shown 
in Fig. 20, SENSE also exhibits remarkable performance. The results 
highlight its robustness and accuracy, rendering it an ideal candidate for 
HS object tracking. 

5. Ablation study 

The major contributions of SENSE include SSSE, CFMF, and MA 
modules. The SSSE module and CFME module focus on mining the 
physical material cues of the object, while the MA module emphasizes 
the motion cues. Here we will discuss their effects. To this end, we 
construct ten models including Model-0, Model-1, Model-2, Model-3, 
Model-4, Model-5, Model-6, Model-7, Model-8, and Model-9. Table 5 
details the components and results of different models. Fig. 21 shows the 
precision and success plots. Without consideration of rich material and 
motion cues, the baseline Model-0 [32] is performed on HS videos by 
converting them into false color videos, while the remaining models are 
tested on HS videos. Comprehensive analysis and discussion are shown 
as follows. 

5.1. Effectiveness of SSSE module 

Based on Model-0, Model-1 incorporates the SSSE module that can 
adaptively divide the HS image into complementary false modalities 
according to their contributions. The contributions naturally can be seen 
as initial fusion weights of false modalities. 

From Table 5, it can be observed that Model-0 yields the lowest Pre of 
0.846 and Suc of 0.586. With the introduction of the SSSE module and 
initial contributions (IC) in Model-1, there are significant gains in both 
Pre and Suc by 4.5% (from 0.846 to 0.891) and 5.7% (from 0.586 to 
0.643), respectively. It can be attributed to the adaptive grouping 
capability of SSSE and the fusion of IC. 

5.2. Effectiveness of CFMF module 

In this section, we conduct experiments to validate the CFMF 

Table 4 
Results of per-attribute and overall in terms of the Suc metric.  

Tracker Venue BC DEF FM IPR IV LR MB OCC OPR OV SV OVE 

CSRDCF [79] IJCV 2018 0.541 0.662 0.577 0.587 0.419 0.446 0.585 0.509 0.593 0.330 0.513 0.533 
STRCF [80] CVPR 2018 0.546 0.681 0.577 0.670 0.531 0.411 0.600 0.564 0.675 0.624 0.568 0.568 
ARCF [81] ICCV 2019 0.513 0.648 0.577 0.643 0.485 0.426 0.552 0.510 0.637 0.616 0.537 0.542 
AutoTrack [82] CVPR 2020 0.512 0.659 0.553 0.618 0.473 0.421 0.546 0.513 0.631 0.616 0.528 0.534 
GRM [98] CVPR 2023 0.640 0.732 0.674 0.742 0.612 0.563 0.675 0.645 0.749 0.837 0.653 0.648 
SeqTrack [99] CVPR2023 0.566 0.693 0.638 0.664 0.553 0.528 0.610 0.595 0.710 0.756 0.621 0.594 
ARTrack [56] CVPR2023 0.629 0.721 0.675 0.751 0.573 0.600 0.665 0.621 0.730 0.841 0.651 0.640 
SMAT [100] WACV 2024 0.548 0.729 0.632 0.663 0.515 0.505 0.688 0.578 0.713 0.652 0.597 0.581 
CNHT [60] ICSM 2018 0.183 0.288 0.176 0.272 0.097 0.027 0.094 0.118 0.259 0.144 0.156 0.171 
DeepHKCF [101] TGRS 2019 0.284 0.426 0.264 0.485 0.129 0.083 0.363 0.250 0.428 0.286 0.298 0.303 
MHT [19] TIP 2019 0.606 0.664 0.542 0.670 0.477 0.475 0.560 0.564 0.644 0.626 0.574 0.586 
BAE-Net [22] ICIP 2020 0.651 0.679 0.607 0.699 0.524 0.489 0.593 0.554 0.701 0.516 0.604 0.606 
MFI [59] WISP 2021 0.651 0.639 0.600 0.692 0.516 0.514 0.570 0.546 0.680 0.611 0.599 0.601 
SST-Net [28] WISP 2021 0.685 0.699 0.561 0.696 0.502 0.462 0.535 0.594 0.698 0.480 0.602 0.623 
SiamHYPER [8] TIP 2022 0.714 0.721 0.711 0.721 0.586 0.664 0.753 0.634 0.714 0.602 0.646 0.678 
TSCFW [24] TGRS 2022 0.636 0.648 0.591 0.724 0.535 0.548 0.561 0.556 0.685 0.654 0.603 0.604 
TASSCF [25] CVIU 2022 0.606 0.646 0.575 0.675 0.541 0.485 0.589 0.538 0.666 0.584 0.573 0.587 
DeepTASSCF [25] CVIU 2022 0.630 0.666 0.567 0.720 0.520 0.488 0.595 0.551 0.715 0.616 0.610 0.602 
SEE-Net [21] TIP 2023 0.705 0.710 0.711 0.742 0.566 0.626 0.702 0.622 0.729 0.633 0.649 0.666 
SiamOHOT [31] TGRS 2023 0.699 0.715 0.560 0.732 0.517 0.497 0.610 0.556 0.728 0.582 0.627 0.634 
SiamBAG [23] TGRS 2023 0.648 0.691 0.614 0.703 0.533 0.582 0.649 0.597 0.683 0.634 0.622 0.632 
SENSE Ours 0.721 0.708 0.746 0.752 0.609 0.622 0.730 0.645 0.737 0.629 0.674 0.690  
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module. It initially merges the false modalities based on the contribu-
tions generated by the SSSE module and subsequently aggregates and 
enhances the differential-common features for cross-false modality 
fusion. 

For the IC, a comparison between Model-9 and Model-4 reveals that 
using the IC improves Pre and Suc by 0.5% and 0.6%, respectively. 
Similarly, comparing SENSE and Model-3 shows gains of 2.2% in Pre 
and 1.8% in Suc with the addition of IC. For the differential features 
(DF), we compare Model-5 and Model-2 and find that the addition of DF 
results in a 1.2% improvement in both Pre and Suc. Conversely, 
removing DF in Model-1 leads to a reduction of 1.3% in Pre and 1.2% in 
Suc when compared to Model-6. Comparisons in Model-9 & Model-8 and 
SENSE & Model-7 further confirm the importance of DF. Additionally, 
the introduction of the common features (CF) enhances the Pre and Suc 
of Model-7 by 1.3% and 1.1%, respectively, compared to Model-2. 
Notably, Model-5 exhibits a lower Pre of 0.924 and Suc of 0.672, indi-
cating a 2.8% and 1.8% decrease compared to SENSE due to the absence 
of CF. Similar conclusions can be drawn from the comparison between 
Model-1 and Model-8. 

To comprehensively validate the CFMF module, we compare Model- 

9 and Model-1, where Pre and Suc are boosted by 0.4% and 0.8%, 
respectively. Compared to Model-2, SENSE demonstrates significant 
improvements of 4.0% in Pre and 3.0% in Suc with the aid of the CFME 
module. In addition, the CFMF module, building upon the SSSE module, 
further enhances material awareness, resulting in remarkable improve-
ments of 4.9% in Pre and 6.5% in Suc when comparing Model-0 and 
Model-9. 

5.3. Effectiveness of MA module 

MA module enables HS video object tracking from a perspective of 
cooperating with material and motion cues. A comparison between 
Model-2 and Model-1 reveals enhancements of 2.1% and 1.7% in Pre 
and Suc due to the inclusion of the MA module. Conversely, when 
comparing Model-3 and Model-4, a reduction of 4.0% and 2.7% in Pre 
and Suc can be observed with the removal of the MA module. Further-
more, in comparison to Model-9, SENSE obtains substantial improve-
ments of 5.7% and 3.9% in Pre and Suc, respectively. Similar trends are 
evident in comparisons of Model-7 & Model-8 and Model-5 & Model-6, 
which affirm the effectiveness of the MA module. 

Fig. 18. The precision plot of each attribute and overall. (a) BC. (b) DEF. (c) FM. (d) IPR. (e) IV. (f) LR. (g) MB. (h) OCC. (i) OPR. (j) OV. (k) SV. (l) OVE.  
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In addition, it is observed that the role of the MA module is promi-
nent based on SSSE and CFMF modules, which further validates the 
potential of synergizing material and motion cues in the HS video 
tracking domain. Specifically, SENSE achieves Pre and Suc of 0.952 and 
0.690, higher than that of Model-0 by 10.6% and 10.4%, respectively. 
Overall, extensive experiments have witnessed the effects of SSSE, 
CFMF, and MA modules, proving the competitive performance of 
SENSE. 

5.4. Adaptive selection of gamma 

In this section, we explain the current parameter selection and 
further conduct an adaptive gamma selection experiment, and compare 
it with the current method. In SENSE, γ2, γ3, and γ4 are set with the same 
weights as the baseline [32]. γ1 is empirically set to 1.2 to favor the 
learning of modality generation with the consideration of classification 
and regression capabilities. Further, we conduct experiments and 
compare with the adaptive gamma selection method (AGS). As shown in 
Table 6, we re-train the network to have the gamma weights being 
adaptively chosen by dividing each loss by the average loss. The fashion 

of choosing gamma is not always effective, despite demonstrating good 
performance in the proposed method. 

6. Conclusions 

This article presents an end-to-end hyperspectral video object tracker 
via fusing material and motion cues (SENSE) for HS video object 
tracking. First, we propose an SSSE module, which captures both spec-
tral and spatial features to efficiently solve the self-expression model and 
bridge the band gap. With guidance from the SSSE module, the HS image 
is adaptively grouped into complementary false modalities with varying 
contributions. These false modalities are then fed to a feature extraction 
module, which is pre-trained with RGB data, to address the issue of 
limited training samples. Additionally, a CFMF module is proposed to 
aggregate and enhance the differential-common features extracted from 
false modalities, resulting in robust object representations. Finally, we 
design an MA module, which includes an awareness selector to deter-
mine the reliability of the material and motion cues, as well as a motion 
prediction scheme to handle abnormal states such as occlusion. By 
considering both material and motion cues, SENSE can arouse the 

Fig. 19. The success plot of each attribute and overall. (a) BC. (b) DEF. (c) FM. (d) IPR. (e) IV. (f) LR. (g) MB. (h) OCC. (i) OPR. (j) OV. (k) SV. (l) OVE.  
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material and motion awareness. Comprehensive comparisons and in- 
depth analysis are performed to demonstrate the superiority of our 
approach. 

Nevertheless, the current motion model is relatively simplistic and 
may not fully capture complex motion patterns. Future work will focus 

on uncovering generalized motion cues to further improve performance. 
Furthermore, joining appearance space and motion state space for 
sequence-level training may be a promising direction for robust hyper-
spectral object tracking. 

Fig. 20. Qualitative comparisons with SOTA trackers. Results are displayed in corresponding false color images with the current frame shown in the upper-left 
corner. (a) bus2, attribute: OCC, SV, FM, and IV. (b) campus, attribute: OCC, IV, and SV. (c) car3, attribute: OCC, SV, IV, and LR. (d) playground, attribute: OCC 
and SV. (e) student, attribute: SV and IV. (f) toy2, attribute: OCC, SV, OPR, BC, and IV. 

Table 5 
Composition and results of different models.  

Model SSSE CFMF MA Pre Suc PreI SucI 

IC DF CF 

Model-0 - - - - - 0.846 0.586 n/a n/a 
Model-1 ✓ ✓ - - - 0.891 0.643 4.5% 5.7% 
Model-2 ✓ ✓ - - ✓ 0.912 0.660 2.1% 7.4% 
Model-3 ✓ - ✓ ✓ ✓ 0.930 0.672 8.4% 8.6% 
Model-4 ✓ - ✓ ✓ - 0.890 0.645 4.4% 5.9% 
Model-5 ✓ ✓ ✓ - ✓ 0.924 0.672 7.8% 8.6% 
Model-6 ✓ ✓ ✓ - - 0.904 0.655 5.8% 6.9% 
Model-7 ✓ ✓ - ✓ ✓ 0.925 0.671 7.9% 8.5% 
Model-8 ✓ ✓ - ✓ - 0.892 0.647 4.6% 6.1% 
Model-9 ✓ ✓ ✓ ✓ - 0.895 0.651 4.9% 6.5% 
SENSE ✓ ✓ ✓ ✓ ✓ 0.952 0.690 10.6% 10.4% 

SSSE, CFMF, and MA are the proposed spectral-spatial self-expression module, cross-false modality fusion module, and motion awareness module, respectively. IC, DF, 
and CF of the CFMF module are the use of the initial contributions, differential features, and common features, respectively. PreI and SucI are the Pre and Suc im-
provements of the current model compared to Model-0, respectively. 
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