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Abstract—Hyperspectral (HS) video captures continuous spectral 
information of objects, enhancing material identification in tracking 
tasks. It is expected to overcome the inherent limitations of RGB 
and multi-modal tracking, such as finite spectral cues and 
cumbersome modality alignment. However, HS tracking faces 
challenges like data anxiety, band gaps, and huge volumes. In this 
study, inspired by prompt learning in language models, we propose 
the Prompting for Hyperspectral Video Tracking (PHTrack) 
framework. PHTrack learns prompts to adapt foundation models, 
mitigating data anxiety and enhancing performance and efficiency. 
First, the modality prompter (MOP) is proposed to capture rich 
spectral cues and bridge band gaps for improved model adaptation 
and knowledge enhancement. Additionally, the distillation 
prompter (DIP) is developed to refine cross-modal features. 
PHTrack follows feature-level fusion, effectively managing huge 
volumes compared to traditional decision-level fusion fashions. 
Extensive experiments validate the proposed framework, offering 
valuable insights for future research. The code and data will be 
available at https://github.com/YZCU/PHTrack. 

Index Terms—Hyperspectral video tracking, Prompt learning, 
Self-expression model, Material information. 

I.INTRODUCTION  

isual object tracking aims to establish the association of 
the object in a video, which finds practical applications 
in various fields, such as video surveillance, human-

machine interaction, and medical imaging [1]. Significant 
progress has been made using the red-green-blue (RGB) 
modality [2], [3], [4]. There are still challenges to overcome in 
complex situations like similar appearance, low light, poor 
visibility, and background clutter due to the limited spectral cues 
[5]. To address these challenges, multi-modal data with 
complementary cues has been uncovered for enhanced 
performance, such as RGB plus thermal infrared (RGB-T) [6], 
RGB plus depth (RGB-D) [7], and RGB plus event (RGB-E) [8], 
as shown in Fig. 1. However, the routine multi-modal object 
tracking mission involves the multi-device imaging. In RGB-T 
tracking, for example, the charge-coupled device and an infrared 
camera are usually mounted on a platform to simultaneously 
record multi-modal data [9]. Despite the proximity, multi-device 
imaging makes it difficult to capture the same scene, especially 
for small objects at long distances. Hence, the modal alignment 
has become a standard practice [9], although it may lead to image 
distortion problems, as shown in Fig. 1(a) and (b). 

Breakthroughs in imaging technology have led to the 
development of hyperspectral (HS) cameras, which are powerful 
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Fig. 1. Sample of multi-modal data. (a) and (b) show RGB and Thermal 
infrared modalities. (c) and (d) are RGB and Depth modalities. (e) and 
(f) are RGB and Event modalities. (g) and (h) are multi-modal data 
generated from the HS modality. 

tools for capturing the continuous spectral characteristics for 
object detection [10], [11], classification [12], image 
enhancement [13], and change detection [14]. The camera 
enables trackers to identify materials based on their spectral 
signatures [15]. Notably, the HS data records the material 
radiated signals in distinct bands that are shot from the same 
viewpoint. Indeed, conventional multi-modal devices capture 
information in different radiated bands (e.g., RGB and infrared) 
or different mechanisms (e.g., depth and event). Integrating 
robust multi-modal tracking into HS video tracking holds 
promise for overcoming spectral limitations and alignment issues 
in RGB and multi-modal tracking domains. 

HS trackers mainly rely on discriminative features and 
generalized models. Previous studies, such as TASSCF [16], 
TSCFW [17], and MHT [18] inherit the correlation filter using 
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hand-crafted features. However, the limited discrimination of 
hand-crafted features can affect tracking performance [19]. To 
address this problem, recent state-of-the-art (SOTA) works, such 
as SiamBAG [20], SPIRIT [15], SENSE [21], and SiamOHOT 
[22], primarily use the Siamese network embedding deep 
features for robust object representations. Discriminative 
features are fundamental, and a robust model determines the 
ceiling of performance [23]. As evidenced in RGB tracking, 
traditional correlation filters struggle to achieve comparable 
results against Siamese networks [24], [25]. 

Currently, the field of HS video tracking is encountering 
several challenges. First, data anxiety, i.e., the scarcity and poor 
transferability of HS video datasets, hinders the direct training of 
a generalized HS tracking model [5], [15]. Second, the 
discrepancy in band numbers between RGB and HS modalities, 
known as band gaps, poses a challenge [26]. Third, the huge 
volumes where the computational cost of processing HS data is 
expensive due to dense bands leads to slower operations [22]. 
RGB tracking benefits from extensive datasets like TrackingNet 
[27] and ImageNet [28], fostering well-trained foundational 
models. For the data anxiety, one conceivable idea is to use the 
pre-trained RGB foundation model and perform full fine-tuning 
on HS training sets. While effective, the risk of overfitting is 
increasing due to the scarcity of large-scale HS video datasets, 
contrasting with the data-intensive demands of data-driven 
models. Additionally, full fine-tuning is time-consuming, and 
parameter storage imposes a significant burden [29]. Addressing 
these data constraints is crucial for achieving robust HS models. 
Prompt tuning, effective in natural language processing, 
enhances foundation models by injecting textual prompts. 
Regarding band gaps, approaches like SiamHT [30], BAHT [31], 
and BS-SiamRPN [32], attempt to convert HS images into a 
three-channel representation through manual selection and 
dimension reduction, which inevitably leads to loss and 
distortion of critical material cues [26]. In contrast, methods such 
as MHT [18], BRRF-Net [33], SiamBAG [20], SEE-Net [26], 
and SST-Net [19], aim to capitalize on rich spectral information, 
yielding competitive results. Despite their potential, these 
methods often rely on decision-level fusion, potentially limiting 
efficiency by producing multiple outputs (e.g., response maps 
and bounding boxes) per inference session [15]. 

Motivated by the above analysis, this article proposes the 
Prompting for Hyperspectral Video Tracking (PHTrack) 
framework. Leveraging shared knowledge in feature extraction 
and attentional patterns between HS and RGB modalities, we 
address data scarcity in HS tracking through prompt learning 
with prompt tuning using the RGB-based foundation model. 
PHTrack includes trainable prompters: the modality prompter 
(MOP) learns multi-modal generation from HS images to extract 
spectral cues and bridge HS-RGB domains, while the distillation 
prompter (DIP) integrates cross-modal features by refining 
adjacent modality information, enhancing classification and 
regression networks of the foundation model. PHTrack’s feature-
level fusion strategy alleviates the challenge of processing huge 
volumes compared to traditional decision-level fusion methods. 
Major contributions can be outlined as follows. 
1） We propose the prompt tracking framework, PHTrack, 

which harnesses learned prompts to effectively adapt an off-
the-shelf foundation model from the RGB domain to the HS 

tracking domain, addressing the data anxiety. 
2） A modality prompter is developed to learn the multi-modal 

generation of HS images, enabling the extraction of rich 
spectral cues and bridging band gaps between HS and RGB 
domains to stimulate prior knowledge. 

3） A distillation prompter is designed to integrate cross-modal 
complementary features, notably alleviating the challenge of 
processing large volumes of HS modality compared to 
decision-level fusion methods. 

Extensive experiments are conducted to validate the proposed 
method. The remainder is organized as follows. Section II 
provides related work. In Section III, we detail the proposed 
method. Section IV presents the experimental results and 
analysis. Lastly, Section V formulates the conclusions and 
highlights the main contribution. 

II.RELATED WORK 

A. HS Video Tracking 

Generative and discriminative paradigms are used in HS video 
tracking. In the early stages, researchers focus on the generative 
paradigm, which involves creating a model to represent the 
object and finding similar regions [34]. However, recent HS 
trackers have predominantly inherited the discriminative 
paradigm including correlation filters and Siamese networks. 
Some HS trackers, such as CNHT [35], MHT [18], TSCFW [17], 
TASSCF [16], and MFI [36], are modeled on correlation filters 
to make use of full band information. Despite incorporating 
hand-crafted and/or deep features, these correlation filter-based 
HS trackers achieve limited success [26]. As mentioned earlier, 
reliable tracking relies on discriminative features, while the 
performance ceiling is determined by the robustness of the model. 
The simplicity and discriminative capabilities of the Siamese 
network have garnered significant attention. SOTA HS trackers, 
such as SiamOHOT [22], SEE-Net [26], SiamBAG [20], 
SiamHYPER [5], CBFF-Net [37], SiamHT [30], BRRF-Net [33], 
SSTtrack [38], and Trans-DAT [39], have integrated Siamese 
networks to deliver exceptional performance, laying a solid 
foundation for further research. For example, SiamBAG [20] 
develops a novel Siamese framework using band attention 
grouping to address insufficient training data challenges. CBFF-
Net [37] develops a bidirectional multiple deep feature fusion 
module and a cross-band group attention module to enhance 
interaction information among HS bands. Extensive experiments 
confirm their effectiveness. Nevertheless, issues like data anxiety, 
band gaps, and huge volumes inherently impede the robustness 
of HS video object tracking. Towards this end, we propose 
PHTrack, a streamlined framework integrating prompt learning 
to maximize the scalability of foundation models.  

B. Visual Prompt Learning 

In recent years, prompt learning has significantly enhanced 
performance across various natural language processing tasks 
[40]. Interestingly, this approach has also proven to be effective 
in visual tasks. For example, AdaptFormer [41] fine-tunes 
lightweight modules to adapt the pre-trained backbone for 
scalable vision recognition tasks. VPT [42] develops an effective 
alternative to prompt tuning the large-scale Transformer models. 
EVP [43] emphasizes learnable parameters that accentuate
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Fig. 2. Overview of the proposed HS video object tracking framework: PHTrack. 

explicit visual content, incorporating features from frozen patch 
embedding and high-frequency input components. Recently, 
researchers have introduced visual prompt tuning for generative 
transfer learning [44]. Extensive experiments demonstrate the 
effectiveness of knowledge transfer, yielding significantly 
improved image generation quality. In [45], researchers embed 
prompt learning to harness domain-specific knowledge from 
specialized foundation models. They employ a quaternion 
network to transfer the strong recognition capability of vision-
language models across different domains. In tracking, ProTrack 
[46] innovatively converts multi-modal inputs into a single 
modality through the prompt paradigm, which enables efficient 
capabilities acquired from pre-trained RGB foundation models. 
ViPT [29] applies prompt learning to multi-modal tracking by 
tailoring prompts to each modality. MPTrack [47] enables 
efficient multi-template aggregation and interaction with 
relevant queries and clues for visual object tracking. BAT [48] 
employs a bi-directional adapter to enhance multi-modal tracking, 
dynamically analyzing evolving dominant-auxiliary 
relationships among modalities and extracting valuable 
information from the pre-trained foundation model. Considerable 
research has demonstrated the effectiveness and generalization 
of prompt learning in the visual community. 

III.PROPOSED APPROACH  

A. Overview 

The PHTrack framework consists of MOP and DIP with a pre-
trained foundation network comprising backbone, bottleneck, 
regression, and classification sub-networks (Fig. 2). Initially, HS 
images of arbitrary scales are cropped into patches (i.e., search 
and template patches), and input to the MOP for generating 

multi-modal data to extract spectral information, which is then 
utilized for feature extraction and correlation. DIP integrates 
cross-modal features by modality distillation, and object state 
estimation is handled by the prediction head. PHTrack minimizes 
parameter burden by sharing weights across components. 

B. Modality Prompter 

As discussed, the HS modality offers rich spectral information, 
addressing RGB limitations. However, overfitting risks arise due 
to the lack of large-scale HS datasets and the data demands of 
data-driven models, hindering the direct learning of a generalized 
HS model. Thus, we explore prompt learning to leverage RGB-
based foundation models. Specifically, we propose MOP to 
extract rich spectral cues and bridge band gaps, leveraging prior 
knowledge. MOP inherits the learning-to-optimize fashion to 
derive the HS self-expression model and generate multi-modal 
data from HS images. Its key components include HS self-
expression modeling and multi-modal generation. 

1) HS Self-expression Modeling: HS self-expression modeling 
involves selecting informative bands from an original set. Each 
band is reconstructed using a self-expression matrix 𝐶 ∈ ℝ×, 
where 𝐵 is the number of bands. Within 𝐶, the 𝑗-th column, 𝑖-th 
row, and (𝑖, 𝑗) -th elements are denoted as 𝑐 , 𝑐 , and 𝑐 , 
respectively. 𝐶  reveals intrinsic relationships among spectral 
bands and can be used to generate multi-modal data. 

Given an HS video, each frame 𝑋 can be represented as 𝑋 =
[𝑥ଵ, 𝑥ଶ, … , 𝑥] ∈ ℝ× , where 𝐷 = 𝑀 × 𝑁  is the number of 
pixels, and 𝑥 ∈ ℝெ×ே  is the 𝑖 -th band vector. The HS self-
expression model for the band set 𝑋 is represented as: 

𝑎𝑟𝑔𝑚𝑖𝑛‖𝐶‖ଵ,ଶ, s. t. , 𝑋 = 𝑋𝐶 + 𝐸, 𝑑𝑖𝑎𝑔(𝐶) = 0, 𝐶 ≥ 0 ൫1൯
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Fig. 3. Architecture of the proposed MOP. 

‖𝐶‖ଵ,ଶ =  ฮ𝑐ฮ
ଶ



ୀଵ
,  𝑐



ୀଵ
= 1, ∀𝑗. ൫2൯ 

where 𝐸 ∈ ℝ× denotes the residual induced by Gaussian noise. 
𝑑𝑖𝑎𝑔(𝐶) = 0 aims to prevent the trivial solution. 𝐶 ≥ 0 ensures 
that each element of 𝑐 indicates the probability of representing 

𝑥. ‖𝐶‖ଵ,ଶ is the sum of 𝑙ଶ-norm of all row vectors 𝑐.  
2) Multi-modal Generation: The key to HS self-expression 

modeling lies in solving for 𝐶. The traditional solution usually 
involves a time-consuming iterative optimization strategy. 
However, MOP inherits the learning-to-optimize strategy, 
enabling the efficient solution of 𝐶  and facilitating modality 
generation from the HS image. MOP (Fig. 3) comprises multi-
scale feature extraction and modality generation components. 

To achieve multi-scale feature extraction, our method fosters 
information interaction at different scales to mine rich contextual 
representations. It is built upon the Atrous Spatial Pyramid 
Pooling [49] and comprises four branches. The first three 
branches employ dilated convolutions with dilation rates of 1, 6, 
and 12 to expand the receptive field and capture surrounding 
information. The process is formulated as follows: 

⎩
⎪
⎨

⎪
⎧ 𝑀𝑠ଵ = 𝐷𝐵𝑅ଵ൫𝐶𝐵𝑅(𝑋)൯,

𝑀𝑠ଶ = 𝐷𝐵𝑅൫𝐶𝐵𝑅(𝑋)൯,

𝑀𝑠ଷ = 𝐷𝐵𝑅ଵଶ൫𝐶𝐵𝑅(𝑋)൯,

𝑀𝑠ସ = 𝐶𝐵𝑅(𝑋),

൫3൯ 

where 𝑀𝑠 denotes the multi-scale feature extracted from the 𝑖-
th branch, 𝐶𝐵𝑅 signifies the standard convolution followed by 
batch normalization (BN) and Rectified Linear Unit (ReLU). 
𝐷𝐵𝑅  denotes dilated convolution with a dilation rate of 𝑞 
followed by BN and ReLU. Next, the multi-scale feature branch 
aligns cross-scale information using the proposed wavelet signal 
transform (WST) module. It is an indisputable fact that the cosine 

 

Fig. 4. Architecture of the proposed WST module. 

and sine functions are the most versatile wavelets in signal 
transformation and signal classification, which are expected to 
capture the signal of objects at variable sizes or salience, 
providing effective contextual information [50]. The 
mathematical expression for the WST module (Fig. 4) is 

⎩
⎪
⎨

⎪
⎧

𝑀𝑠
 = 𝐶𝐵𝑅൫𝑀𝑠 ⊗ 𝐶𝑜𝑠(𝑀𝑠)൯,

𝑀𝑠
௦ = 𝐶𝐵𝑅൫𝑀𝑠 ⊗ 𝑆𝑖𝑛(𝑀𝑠)൯,

𝑀𝑠
௨ = 𝑀𝑠

 ⊗ 𝑀𝑠
௦,

𝑀𝑠
௦௨ = 𝑀𝑠

 ⊕ 𝑀𝑠
௦,

𝑀𝑠
௪௦௧ = 𝐶𝐵𝑅൫𝑀𝑠

௨൯ ⊕ 𝐶𝐵𝑅(𝑀𝑠
௦௨),

൫4൯

where ⊗ and ⊕ denote the element-wise multiplication and 
summation. 𝑀𝑠

௪௦௧  is the output of the WST module. These 
features, generated at four scales, are then concatenated and 
further passed by a bottleneck layer to adjust the channels. 
Inspired by the efficiency and semantic interaction of the multi-
layer perceptron (MLP), these features are decoded by an MLP 
to obtain 𝐶 . To summarize, the process is described as: 

ቐ

𝑀𝑠௧ = 𝐶𝑎𝑡(𝑀𝑠ଵ
௪௦௧ , 𝑀𝑠ଶ

௪௦௧ , 𝑀𝑠ଷ
௪௦௧ , 𝑀𝑠ସ),

𝐻 = 𝑀𝐿𝑃൫𝐶𝐵𝑅(𝑀𝑠௧)൯,

𝐶 = 𝐻்𝐻

൫5൯ 

where 𝐶𝑎𝑡  is concatenation. 𝑀𝐿𝑃  means MLP. 𝐻  is the 
attention matrix of 𝑀𝑠௧ . 

For the multi-modal generation, 𝐶 ∈ ℝ× is a self-expression 
coefficient matrix. 𝑐  denotes the representation coefficient of 
the 𝑗-th band represented by all the remaining bands (including 
itself), while 𝑐 denotes the contribution of the 𝑖-th band to the 
spectral reconstruction. The more important a band is, the larger 
the contribution. By aggregating contributions from C, we derive 
rankings that indicate the significance of each band, which are 
subsequently used for generating multi-modal data. More 
concretely, 𝐶 is normalized along the column direction by �̆� =

ห𝑐ห ฮ𝑐ฮ
ଶ

ൗ , ∀𝑖 , followed by 𝑧 = ฮ�̆�ฮ
ଵ

, where �̆�  is the 

normalization output of the 𝑗-th column of 𝐶. �̆� stands for the 𝑖-
th row of the normalized 𝐶. The cumulative contribution of 𝐵 
bands is denoted as 𝑍 = [𝑧ଵ, 𝑧ଶ, ⋯ , 𝑧] ∈ ℝ×ଵ. Then, we sort all 
HS bands in descending order and group them to get multi-modal 
data 𝑄 = [𝑞ଵ, 𝑞ଶ, ⋯ , 𝑞], where 𝐾 = 𝐵//3 and 𝑞 ∈ ℝெ×ே×ଷ. 

C. Distilling Prompter  

Guided by MOP principles, PHTrack learns the multi-modal 
generation, effectively bridging band gaps. These data are then 
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used for feature extraction and correlation. Neighboring 
modalities often provide rich information for object 
representations. Multi-modal features encompass discriminative 
information from other modalities alongside the present one. 
However, primitive fusion strategies, such as concatenation and 
element-wise summation, often fail to consider the varying 
importance of multi-modal features across different spatial and 
channel contexts. Different channel and spatial features vary in 
their object representation capabilities, and treating them equally 
can impact tracking performance. Motivated by this, we propose 
DIP to integrate cross-modal complementary features by refining 
adjacent modalities, thereby enhancing the classification and 
regression networks of the foundation model. Weight parameters 
are shared among DIPs to adhere to the prompt learning 
paradigm, minimizing parameter count. 

Fig. 5 depicts the DIP architecture, which fuses two input 
features using cross-attention and channel-spatial re-weighting. 
Multi-head attention, a critical component of the Transformer, 
comprises several parallel non-local attention layers. It aims to 
capture global dependencies across all positions of the input. 
Specifically, we compute the Query, Key, and Value by: 

൞

𝒬௧ = 𝑅𝑇൫𝐶𝐵𝑅(𝐹௧
)൯,

𝒦௧ = 𝑅൫𝐶𝐵𝑅(𝐹௧
)൯,

𝒱௧ = 𝑅𝑇൫𝐶𝐵𝑅(𝐹௧
)൯,

൫6൯ 

൞

𝒬 = 𝑅𝑇൫𝐶𝐵𝑅(𝐹
)൯,

𝒦 = 𝑅൫𝐶𝐵𝑅(𝐹
)൯,

𝒱 = 𝑅𝑇൫𝐶𝐵𝑅(𝐹
)൯,

൫7൯ 

where 𝑅𝑇  denotes the Reshape & Transpose. 𝑅  denotes the 
Reshape. 𝐹௧

  and 𝐹
  are the input features from the top and 

bottom, respectively. Matrices 𝒬, 𝒦, and 𝒱 denote query, key of 
dimension 𝑑, and value, respectively. The remainder of the DIP 
is formulated by: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝐹௧
ଵ = 𝐶𝐵𝑅 ቌ𝑅 ቆ𝑆𝐹 ቆ

𝒬𝒦௧
்

ඥ𝑑

ቇ 𝒱௧ቇቍ ,

𝐹
ଵ = 𝐶𝐵𝑅 ቌ𝑅 ቆ𝑆𝐹 ቆ

𝒬௧𝒦
்

ඥ𝑑

ቇ 𝒱ቇቍ ,

𝑊 = 𝐶𝐵𝑅൫𝐶𝑎𝑡(𝐹௧
ଵ, 𝐹

ଵ)൯,

𝐹 = 𝑊 ⊗ 𝐹௧
 ⊕ (1 − 𝑊) ⊗ 𝐹

,

൫8൯ 

where 𝑊 is the weight. 𝐹 is the result of DIP. 

D. Loss Function 

Here we present the multi-task loss ℒ௧௧: 

𝐿௧௧ = 𝜇ଵ𝐿 + 𝜇ଶ𝐿௦ + 𝜇ଷ𝐿 + 𝜇ସ𝐿 , ൫9൯ 

where 𝐿 , 𝐿௦ , 𝐿 , and 𝐿  represent the reconstruction, 
classification, regression, and center-ness losses, respectively. 𝜇ଵ, 
𝜇ଶ, 𝜇ଷ and 𝜇ସ denote corresponding weights. During training, we 
empirically set  𝜇ଵ, 𝜇ଶ, 𝜇ଷ, and 𝜇ସ to 3.0, 1.0, 3.0, and 1.0 for all 
experiments. Concretely, 𝐿  is the average 𝐿ଵ  loss of the 
template and the search patches. 𝐿௦ is the cross-entropy loss for 
classification. 𝐿  is the IoU loss between the estimation and 
ground truth, defined as: 

 
Fig. 5. Architecture of the proposed DIP. 

⎩
⎪
⎨

⎪
⎧

𝑣ො(,)
 = 𝑙መ = 𝑝௫ − 𝑝௫

௧ ,

𝑣ො(,)
௧ = �̂� = 𝑝௬ − 𝑝௬
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where ∙̂  is the estimation item. 𝑙መ , �̂� , �̂� , and 𝑏  indicate the 
estimated distance from the corresponding position to four sides 
(i.e., left, top, right, and bottom) of the box in the search region. 
൫𝑝௫ , 𝑝௬൯ is the corresponding positions of points (𝑖, 𝑗). ൫𝑝௫

௧ , 𝑝௬
௧൯ 

and ൫𝑝௫
 , 𝑝௬

൯  are the left-top and right-bottom corners of 
ground truth. 𝑜ො(,)  is the regression object at the regression 

response map 𝐴 ∈ ℝ௪××ସ, ℒ௨ is the IoU loss. 
The object’s center can impact prediction, with a decrease in 

bounding box quality as the predicted center deviates from the 
ground truth. To mitigate the concern, 𝐿 is defined as: 
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where 𝑆(𝑖, 𝑗) records the center-ness score for each point (𝑖, 𝑗) of 
the center-ness response map 𝐴 ∈ ℝ௪××ଵ in the search patch. 
𝑆(𝑖, 𝑗) is up to 1 while satisfying �̂� = 𝑏, 𝑙መ = �̂� and 𝕀൫𝑣ො(,)൯ = 1. 
In this way, the predicted center would be drawn as close to the 
ground truth as possible. 

IV.EXPERIMENTS 

A. Experimental Setups 

1) Datasets: PHTrack undergoes training and testing using the 
HS dataset from the Hyperspectral Object Tracking Competition 
(HOTC) [18], which comprises 40 sets for training and 35 sets 
for testing. Each dataset with frame-level annotations contains 
three video types: HS video (16 bands), false color video (3 
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Fig. 6. Comparison with hand-crafted feature-based trackers on RGB videos. (a) Precision plot. (b) Success plot. 

 
Fig. 7. Comparison with hand-crafted feature-based trackers on false color videos. (a) Precision plot. (b) Success plot. 

bands), and RGB video (3 bands). The false color video is 
derived from the corresponding HS video, while the RGB video 
is captured from a viewpoint similar to the HS video. The HOTC 
dataset, characterized by 11 attributes, i.e., Occlusion (OCC), 
Scale Variation (SV), Fast Motion (FM), Motion Blur (MB), 
Illumination Variation (IV), Low Resolution (LR), Background 
Clutter (BC), In-Plane Rotation (IPR), Out-of-Plane Rotation 
(OPR), Out-of-View (OV), and Deformation (DEF), enables a 
synthetic evaluation of trackers.  

2) Implementation Details: The proposed PHTrack is coded in 
Python with PyTorch 2.0.0 and trained on two NVIDIA RTX 
3090 GPU cards. The foundation model is pre-trained on RGB 
datasets including ImageNet-VID [28], ImageNet-DET [28], 
YouTube-BB [51], and COCO [52]. Drawing inspiration from 
prompt learning, the prompt tuning is implemented on HS sets 
with a stochastic gradient descent optimizer involving an initial 
learning rate of 0.001, a batch size of 32, and a span of 20 epochs. 
The search and template patches are set to 255 and 127 pixels 

with 16 bands. 
3) Assessment Metrics: As common metrics, the precision and 

success plots are utilized to benchmark trackers in one-pass 
evaluation [53]. The precision plot records the percentage of 
frames with a center location error 𝑣 less than thresholds ranging 
from 1 to 50 pixels. Here, 𝑣  is defined as 𝑣 =

ඥ(𝑥 − 𝑋)ଶ + (𝑦 − 𝑌)ଶ , where (𝑥, 𝑦)  and (𝑋, 𝑌)  denote the 
center of the estimated bounding box 𝑟௧ and the ground truth 𝑟, 
respectively. In the success plot, the success rate aims to calculate 
the percentage of successful frames where the overlap score 𝑠 
surpasses thresholds ranging from 0 to 1. 𝑠  is defined as 𝑠 =

ห𝑟௧ ∩ 𝑟ห ห𝑟௧ ∪ 𝑟หൗ , where ∪ and ∩ are the union and intersection, 
and |∙| stands for the number of pixels in a given region. As the 
guideline, trackers are ranked by the precision at 20 pixels on the 
precision plot and the area under the curve on the success plot, 
i.e., Pre and Suc, respectively. FPS is used to evaluate tracking 
speed. 
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TABLE I 

PARALLEL COMPARISON WITH SOTA RGB TRACKERS 

NO. Tracker Venue Feature/Backbone/Tag 
RGB FAC/HS 

PreD SucD 
Pre Suc Pre Suc 

1 CSK [54] ECCV 2012 I 0.575  0.331  0.615  0.343  -4.0% -1.2% 

2 CN [55] CVPR 2014 CN+I 0.646  0.380  0.643  0.379  0.3% 0.1% 

3 SAMF [56] ECCV 2015 HOG+CN+I 0.693  0.418  0.660  0.388  3.3% 3.0% 

4 DAT [57] CVPR 2015 CH 0.647  0.394  0.542  0.327  10.5% 6.7% 

5 KCF [2] TPAMI 2015 HOG 0.613  0.377  0.586  0.358  2.7% 1.9% 

6 SRDCF [58] ICCV 2015 HOG 0.846  0.568  0.830  0.554  1.6% 1.4% 

7 Staple [59] CVPR 2016 HOG+CN 0.801  0.518  0.770  0.507  3.1% 1.1% 

8 DSST [60] TPAMI 2017 HOG+I 0.776  0.504  0.731  0.480  4.5% 2.4% 

9 BACF [61] ICCV 2017 HOG 0.793  0.533  0.819  0.544  -2.6% -1.1% 

10 CSRDCF [62] IJCV 2018 HOG+CN+CH 0.870  0.563  0.833  0.533  3.7% 3.0% 

11 STRCF [63] CVPR 2018 HOG+CN 0.829  0.569  0.838  0.568  -0.9% 0.1% 

12 ARCF [64] ICCV 2019 HOG+CN+I 0.818  0.564  0.798  0.542  2.0% 2.2% 

13 AutoTrack [65] CVPR 2020 HOG+CN+I 0.831  0.534  0.818  0.534  1.3% 0.0% 

14 ECO [66] CVPR 2017 VGG-M 0.872  0.577  0.834  0.556  3.8% 2.1% 

15 SiamRPN [67] CVPR 2018 AlexNet 0.902  0.592  0.757  0.486  14.5% 10.6% 

16 DaSiamRPN [68] ECCV 2018 AlexNet 0.878  0.622  0.850  0.575  2.8% 4.7% 

17 ATOM [69] CVPR 2019 ResNet-18 0.917  0.614  0.867  0.556  5.0% 5.8% 

18 SiamRPN++ [70] CVPR 2019 ResNet-50 0.912  0.653  0.847  0.591  6.5% 6.2% 

19 UpdateNet [71] ICCV 2019 AlexNet/DaSiamRPN 0.863  0.595  0.833  0.551  3.0% 4.4% 

20 SiamDW [72] CVPR 2019 CIRNext22/SiamFC 0.872  0.565  0.812  0.529  6.0% 3.6% 

21 SiamMask [73] CVPR 2019 ResNet-50 0.877  0.611  0.813  0.554  6.4% 5.7% 

22 PrDiMP [74] CVPR 2020 ResNet-50 0.917  0.634  0.829  0.565  8.8% 6.9% 

23 SiamBAN [75] CVPR 2020 ResNet-50 0.853  0.610  0.863  0.587  -1.0% 2.3% 

24 SiamFC++ [76] AAAI 2020 GoogLeNet 0.865  0.635  0.820  0.578  4.5% 5.7% 

25 SiamGAT [77] CVPR 2021 GoogLeNet 0.889  0.649  0.820  0.576  6.9% 7.3% 

26 LightTrack [78] CVPR 2021 Custom 0.814  0.593  0.761  0.530  5.3% 6.3% 

27 Stark [79] ICCV 2021 ResNet-50/ST 0.900  0.637  0.814  0.579  8.6% 5.8% 

28 SiamCAR [3] IJCV 2022 ResNet-50 0.882  0.636  0.846  0.586  3.6% 5.0% 

29 OSTrack [80] ECCV 2022 ViT-Base/256GOT 0.897  0.621  0.818  0.558  7.9% 6.3% 

30 SBT [81] CVPR 2022 SBT-Base/GOT 0.869  0.600  0.778  0.519  9.1% 8.1% 

31 GRM [82] CVPR 2023 ViT-Base/256GOT 0.905  0.630  0.815  0.566  9.0% 6.4% 

32 SeqTrack [83] CVPR 2023 ViT-Large/256GOT 0.890  0.612  0.860  0.583  3.0% 2.9% 

33 SMAT [84] WACV 2024 MobileViTv2 0.894  0.637  0.831  0.581  6.3% 5.6% 

34 PHTrack Ours ResNet-50 n/a n/a 0.919 0.660 n/a n/a 

The top three scores are marked in red, green, and blue. RGB, FAC, and HS are the red-green-blue, false color, and hyperspectral videos, respectively. PreD and SucD 
are the Pre degradation and Suc degradation from RGB to false color videos. Trackers using hand-crafted features are shown above the dashed line, while trackers 
using deep features are presented below. n/a stands for not applicable. 

B. Comparison with SOTA RGB Trackers 

In this section, we conduct a comparative analysis of PHTrack 
with 33 SOTA RGB trackers. To facilitate clarity, we categorize 
these trackers into two groups: (i) those based on hand-crafted 
features and (ii) those based on deep features. These trackers 
encompass a wide range of features, backbones, and paradigms. 

1) Hand-crafted Feature-based Trackers: We compare 
PHTrack with 13 RGB SOTAs based on hand-crafted features, 
including CSK [54], CN [55], SAMF [56], DAT [57], KCF [2], 
SRDCF [58], Staple [59], DSST [60], BACF [61], CSRDCF [62], 
STRCF [63], ARCF [64], and AutoTrack [65]. These trackers 
are assessed on RGB and false color videos, while PHTrack is 
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Fig. 8. Comparison with deep feature-based trackers on RGB videos. (a) Precision plot. (b) Success plot. 

 

Fig. 9. Comparison with deep feature-based trackers on false color videos. (a) Precision plot. (b) Success plot. 

tested on HS videos. Table I details the characteristics and results. 
Fig. 6 presents the precision and success plots tested on RGB 
videos.  

PHTrack yields optimal results with Pre of 0.919 and Suc of 
0.660. Compared to CSRDCF, PHTrack exhibits gains of 4.9% 
in Pre and 9.7% in Suc. Compared to SRDCF and STRCF, 
PHTrack achieves impressive improvements in Suc of 9.2% and 
9.1%, respectively. The finding underlines the potential of 
leveraging abundant material information present in HS data.  

It is conceivable to employ the RGB tracker by converting the 
HS video into a false color video. Naturally, we conduct 
experiments on the false color video, as illustrated in Fig. 7 and 
Table I. STRCF maintains a respectable performance, followed 
by SRDCF and BACF with Suc scores of 0.568, 0.554, and 0.544, 
respectively. Remarkably, PHTrack emerges as the frontrunner, 
outperforming its counterparts by 9.2%, 10.6%, and 11.6%, 

respectively. This is attributed to the MOP and DIP, which 
stimulate foundation models and distill cross-modal features. 

2) Deep Feature-based Trackers: Deep features, known for 
their discriminative capabilities, have made significant strides in 
the field of RGB tracking. Here we evaluate PHTrack against 20 
deep feature-based trackers including ECO [66], SiamRPN [67], 
DaSiamRPN [68], ATOM [69], SiamRPN++ [70], UpdateNet 
[71], SiamDW [72], SiamMask [73], PrDiMP [74], SiamBAN 
[75], SiamFC++ [76], SiamGAT [77], LightTrack [78], Stark 
[79], SiamCAR [3], OSTrack [80], SBT [81], GRM [82], 
SeqTrack [83], and SMAT [84].  

Detailed results are presented in Table I, while precision and 
success plots, tested on RGB and false color videos, are shown 
in Fig. 8 and Fig. 9, respectively. Overall, leveraging efficient 
and effective prompter, i.e., MOP and DIP, PHTrack 
demonstrates impressive results. 
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TABLE II 

CHARACTERISTICS AND RESULTS OF HS TRACKERS 

NO. Tracker Venue Framework Feature UFB MOP FPS Pre Suc 

1 CNHT [35] ICSM 2018 KCF Deep feature  CPU 2.6  0.336  0.171  

2 DeepHKCF [87] TGRS 2019 KCF Deep feature - CPU 0.9  0.543  0.303  

3 MHT [18] TIP 2020 KCF Hand-crafted feature  CPU 2.2  0.883  0.586  

4 BAE-Net [88] ICIP 2020 VITAL Deep feature  GPU 0.5  0.879  0.606  

5 MFI [36] WISP 2021 KCF Deep + Hand-crafted features - CPU 0.4  0.893  0.601  

6 SST-Net [19] WISP 2021 VITAL Deep feature  GPU 0.5  0.917  0.623  

7 TSCFW [17] TGRS 2022 KCF Hand-crafted features  CPU 3.4  0.887  0.604  

8 TASSCF [16] CVIU 2022 KCF Hand-crafted features - CPU 16.0  0.870  0.587  

9 DeepTASSCF [16] CVIU 2022 KCF Deep feature - CPU 6.0  0.875  0.602  

10 SiamOHOT [22] TGRS 2023 SiamFC Deep feature  GPU 38.0  0.884  0.634  

11 SiamBAG [20] TGRS 2023 SiamFC Deep feature  GPU 5.7  0.893  0.632  

12 SiamHT [30] NCA 2023 SiamFC Deep feature - GPU 16.0  0.878  0.620  

13 PHTrack Ours SiamFC Deep feature  GPU 15.2  0.919  0.660  

UFB denotes the attempt to use of full band. MOP denotes the main operation platform. WISP denotes the WHISPERS.  

C. Parallel Analysis with RGB Trackers 

Fig. 10 compares the top 13 trackers using hand-crafted and 
deep features across RGB and false color videos, providing 
critical insights that advance understanding in HS tracking.  

(i) Deep feature-based trackers outperform hand-crafted ones 
by learning complex representations from training data. This 
shift reduces the reliance on expensive hand-crafted feature 
design, driving progress in HS object tracking research.  

(ii) Performance on false-color videos is lower than on RGB 
videos, though rankings remain consistent.  

(iii) Deep feature-based trackers show greater performance 
degradation (PreD and SucD) compared to hand-crafted feature-
based counterparts due to their heavy reliance on specific 
characteristics present in RGB format training data. 

(iv) Converting HS video to the false color format leads to 
inevitable loss and distortion of crucial material information, 
hindering robust performance. 

(v) Leveraging physical material cues in the HS format is 
expected to improve tracking performance. Additionally, video 
super-resolution techniques [85], [86] may further enhance HS 
object tracking. 

D. Comparison with HS Trackers 

Furthermore, we compare PHTrack with 12 SOTA HS 
trackers including CNHT [35], DeepHKCF [87], MHT [18], 
BAE-Net [88], MFI [36], SST-Net [19], TSCFW [17], TASSCF 
[16], DeepTASSCF [16], SiamOHOT [22], SiamBAG [20], and 
SiamHT [30]. Their characteristics and experimental results are 
shown in Table II, while the precision and success plots are 
depicted in Fig. 11. Regarding Pre, PHTrack, SST-Net, MFI, and 
SiamBAG achieve top rankings with scores of 0.919, 0.917, 
0.893, and 0.893, respectively. In terms of Suc, SiamOHOT, 
SiamBAG, SST-Net, and SiamHT demonstrate competitive 
outcomes with scores of 0.634, 0.632, 0.623, and 0.620 
respectively, securing the top four positions among the compared  

 
Fig. 10. Parallel comparisons with RGB trackers utilizing hand-crafted 
and deep features, ranked by Suc on RGB videos. Hand-crafted trackers: 
STRCF, SRDCF, ARCF, CSRDCF, AutoTrack, BACF, Staple, DSST, 
SAMF, DAT, CN, KCF, CSK. Deep feature-based trackers: 
SiamRPN++, SiamGAT, SMAT, Stark, SiamCAR, SiamFC++, PrDiMP, 
GRM, DaSiamRPN, OSTrack, ATOM, SeqTrack, SiamMask. 

trackers. PHTrack surpasses them by 2.6%, 2.8%, 3.7%, and 
4.0%, respectively. Overall, PHTrack showcases optimal 
performance in both Pre and Suc, underscoring the potential of 
prompt learning in HS video object tracking. Furthermore, Table 
II highlights that leading trackers (e.g., SiamOHOT, SiamBAG, 
SST-Net, and PHTrack) typically inherit the Siamese network, 
whereas low-ranked trackers (e.g., DeepTASSCF and CNHT) 
rely on the kernelized correlation filter. This suggests that the 
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Fig. 11. Comparison with HS trackers on HS videos. (a) Precision plot. (b) Success plot. 

 
Fig. 12. Accuracy-speed comparison with HS trackers on HS videos. (a) Pre vs. FPS. (b) Suc vs. FPS.  

Siamese network may outperform kernelized correlation filter in 
HS video tracking, similar to trends in RGB tracker evolution 
(see Table I). Recent studies, such as SiamOHOT, SiamBAG, 
and SST-Net, harness rich spectral cues for effective 
representations, as abundant spectral cues enhance the tracker’s 
material identification, leading to improved performance. The 
PHTrack, inheriting the Siamese network and integrating learned 
prompters, achieves significant improvements. 

E. Accuracy VS. Speed on HS Videos 

Fig. 12 illustrates the trade-off between accuracy (Pre and Suc) 
and speed (FPS) for various HS trackers, including MHT [18], 
BAE-Net [88], MFI [36], SST-Net [19], TSCFW [17], TASSCF 
[16], DeepTASSCF [16], SiamOHOT [22], SiamBAG [20], 
SiamHT [20], and PHTrack. In Fig. 12(a), most trackers have 
either accuracy below the average Pre of 0.889 (e.g., MHT, 
SiamHT, DeepTASSCF) or speed below the average FPS of 
9.449 (e.g., SiamBAG, TSCFW, MFI). Only PHTrack exceeds 

both average Pre and FPS. Specifically, SiamOHOT attains the 
highest speed, followed by SiamHT, TASSCF, and PHTrack. 
However, SiamOHOT’s Pre is 0.884, 3.5% lower than PHTrack. 
In Fig. 12(b), PHTrack, SiamHT, and SiamOHOT surpass the 
average Suc of 0.614 and FPS. PHTrack has the highest Suc at 
0.660, outperforming SiamHT and SiamOHOT by 4.0% and 2.6% 
respectively. SiamOHOT emphasizes knowledge distillation for 
enhanced tracking efficiency. SEE-Net [26] employs decision-
level fusion to improve effectiveness at the cost of additional 
computational burden thus leading to low speed (8.72 FPS). 
PHTrack inherits the prompt learning paradigm and feature-level 
fusion strategy with the introduction of a moderate amount of 
learnable parameters to present a favorable accuracy-speed trade-
off, positioning it as an effective candidate for HS video tracking. 

F. Attribute-based Evaluations 

We perform attribute-based evaluations with 11 RGB trackers, 
i.e., BACF [61], CSRDCF [62], ARCF [64], AutoTrack [65],
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TABLE III 

PRE RESULTS FOR EACH ATTRIBUTE AND OVERALL 

Tracker Venue BC DEF FM IPR IV LR MB OCC OPR OV SV OVE 

BACF [61] ICCV 2017 0.762  0.947  0.774  0.867  0.804  0.777  0.855  0.779  0.887  0.900  0.838  0.819  

CSRDCF [62] IJCV 2018 0.791  0.956  0.758  0.856  0.783  0.820  0.820  0.796  0.865  0.878  0.845  0.833  

ARCF [64] ICCV 2019 0.740  0.910  0.792  0.899  0.771  0.671  0.799  0.740  0.878  0.887  0.806  0.798  

AutoTrack [65] CVPR 2020 0.759  0.930  0.737  0.882  0.810  0.700  0.827  0.788  0.888  0.891  0.825  0.818  

LightTrack [78] CVPR 2021 0.673  0.924  0.848  0.793  0.687  0.688  0.928  0.722  0.850  0.896  0.768  0.761  

Stark [79] ICCV 2021 0.791  0.917  0.793  0.921  0.848  0.706  0.749  0.813  0.932  1.000  0.852  0.814  

SiamCAR [3] IJCV 2022 0.800  0.935  0.952  0.860  0.868  0.855  0.931  0.818  0.905  0.887  0.877  0.846  

OSTrack [80] ECCV 2022 0.719  0.909  0.949  0.826  0.841  0.831  0.929  0.812  0.911  1.000  0.869  0.818  

SBT [81] CVPR 2022 0.659  0.878  0.930  0.746  0.840  0.806  0.939  0.773  0.840  0.959  0.821  0.778  

GRM [82] CVPR 2023 0.743  0.905  0.955  0.832  0.789  0.819  0.947  0.785  0.944  1.000  0.876  0.815  

SMAT [84] WACV 2024 0.761  0.951  0.957  0.871  0.828  0.778  0.959  0.823  0.944  0.891  0.868  0.831  

CNHT [35] ICSM 2018 0.313  0.448  0.403  0.487  0.251  0.127  0.256  0.218  0.419  0.412  0.287  0.336  

DeepHKCF [87] TGRS 2019 0.513  0.636  0.500  0.737  0.304  0.304  0.626  0.439  0.629  0.548  0.501  0.543  

MHT [18] TIP 2020 0.901  0.908  0.774  0.940  0.806  0.827  0.839  0.816  0.893  0.887  0.874  0.883  

MFI [36] WISP 2021 0.929  0.885  0.832  0.952  0.887  0.878  0.841  0.815  0.950  0.928  0.916  0.893  

TSCFW [17] TGRS 2022 0.907  0.901  0.829  0.956  0.859  0.885  0.853  0.810  0.929  0.896  0.902  0.887  

TASSCF [16] CVIU 2022 0.906  0.914  0.792  0.919  0.873  0.851  0.818  0.781  0.921  0.882  0.870  0.870  

DeepTASSCF [16] CVIU 2022 0.903  0.911  0.794  0.948  0.851  0.839  0.860  0.794  0.949  0.891  0.893  0.875  

SiamOHOT [22] TGRS 2023 0.931  0.935  0.816  0.960  0.825  0.781  0.819  0.800  0.959  0.887  0.895  0.884  

SiamBAG [20] TGRS 2023 0.899  0.936  0.883  0.930  0.846  0.839  0.899  0.831  0.906  0.891  0.892  0.893  

SiamHT [30] NCA 2023 0.878  0.927  0.890  0.951  0.875  0.868  0.881  0.829  0.954  0.896  0.911  0.878  

PHTrack Ours 0.925  0.919  0.993  0.952  0.868  0.894  0.986  0.882  0.947  0.887  0.916  0.919  

TABLE IV 

SUC RESULTS FOR EACH ATTRIBUTE AND OVERALL 

Tracker Venue BC DEF FM IPR IV LR MB OCC OPR OV SV OVE 

BACF [61] ICCV 2017 0.519  0.672  0.568  0.631  0.464  0.417  0.596  0.523  0.643  0.525  0.544  0.544  

CSRDCF [62] IJCV 2018 0.541  0.662  0.577  0.587  0.419  0.446  0.585  0.509  0.593  0.330  0.513  0.533  

ARCF [64] ICCV 2019 0.513  0.648  0.577  0.643  0.485  0.426  0.552  0.510  0.637  0.616  0.537  0.542  

AutoTrack [65] CVPR 2020 0.512  0.659  0.553  0.618  0.473  0.421  0.546  0.513  0.631  0.616  0.528  0.534  

LightTrack [78] CVPR 2021 0.472  0.686  0.606  0.600  0.418  0.441  0.680  0.517  0.638  0.623  0.522  0.530  

Stark [79] ICCV 2021 0.566  0.695  0.539  0.696  0.570  0.483  0.538  0.575  0.704  0.783  0.605  0.579  

SiamCAR [3] IJCV 2022 0.565  0.697  0.662  0.650  0.543  0.553  0.662  0.570  0.678  0.634  0.595  0.586  

OSTrack [80] ECCV 2022 0.486  0.668  0.613  0.607  0.550  0.513  0.613  0.565  0.664  0.779  0.594  0.558  

SBT [81] CVPR 2022 0.429  0.641  0.583  0.528  0.547  0.507  0.624  0.524  0.604  0.728  0.559  0.519  

GRM [82] CVPR 2023 0.516  0.675  0.613  0.625  0.528  0.517  0.630  0.560  0.702  0.810  0.612  0.566  

SMAT [84] WACV 2024 0.548  0.729  0.632  0.663  0.515  0.505  0.688  0.578  0.713  0.652  0.597  0.581  

CNHT [35] ICSM 2018 0.183  0.288  0.176  0.272  0.097  0.027  0.094  0.118  0.259  0.144  0.156  0.171  

DeepHKCF [87] TGRS 2019 0.284  0.426  0.264  0.485  0.129  0.083  0.363  0.250  0.428  0.286  0.298  0.303  

MHT [18] TIP 2020 0.606  0.664  0.542  0.670  0.477  0.475  0.560  0.564  0.644  0.626  0.574  0.586  

MFI [36] WISP 2021 0.651  0.639  0.600  0.692  0.516  0.514  0.570  0.546  0.680  0.611  0.599  0.601  

TSCFW [17] TGRS 2022 0.636  0.648  0.591  0.724  0.535  0.548  0.561  0.556  0.685  0.654  0.603  0.604  

TASSCF [16] CVIU 2022 0.606  0.646  0.575  0.675  0.541  0.485  0.589  0.538  0.666  0.584  0.573  0.587  

DeepTASSCF [16] CVIU 2022 0.630  0.666  0.567  0.720  0.520  0.488  0.595  0.551  0.715  0.616  0.610  0.602  

SiamOHOT [22] TGRS 2023 0.699  0.715  0.560  0.732  0.517  0.497  0.610  0.556  0.728  0.582  0.627  0.634  

SiamBAG [20] TGRS 2023 0.648  0.691  0.614  0.703  0.533  0.582  0.649  0.597  0.683  0.634  0.622  0.632  

SiamHT [30] NCA 2023 0.629  0.682  0.627  0.702  0.581  0.576  0.629  0.580  0.702  0.650  0.635  0.620  

PHTrack Ours 0.679  0.674  0.735  0.725  0.578  0.583  0.730  0.618  0.709  0.604  0.646  0.660  
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Fig. 13. Precision plots for each attribute and overall. (a) BC. (b) DEF. (c) FM. (d) IPR. (e) IV. (f) LR. (g) MB. (h) OCC. (i) OPR. (j) OV. (k) SV. 
(l) OVE. 

LightTrack [78], Stark [79], SiamCAR [3], OSTrack [80], SBT 
[81], GRM [82], and SMAT [84] along with 10 SOTA HS 
trackers including CNHT [35], DeepHKCF [87], MHT [18], MFI 
[36], TSCFW [17], TASSCF [16], DeepTASSCF [16], 
SiamOHOT [22], SiamBAG [20], and SiamHT [30]. The 
evaluation tests RGB trackers on false color videos derived from 

HS videos. Tables III and IV showcase the Pre and Suc scores 
for each attribute and overall (OVE). Additionally, Fig. 13 and 
Fig. 14 display the precision plot and success plot. PHTrack 
ranks among the top three for seven attributes (BC, FM, IPR, LR, 
MB, OCC, and SV) out of the 11 evaluated attributes and yields 
the first overall for Pre. In terms of Suc, PHTrack ranks in the top
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Fig. 14. Success plots for each attribute and overall. (a) BC. (b) DEF. (c) FM. (d) IPR. (e) IV. (f) LR. (g) MB. (h) OCC. (i) OPR. (j) OV. (k) SV. (l) 
OVE. 

two for eight attributes (BC, FM, IPR, IV, LR, MB, OCC, and 
SV) and achieves first place overall. LR poses a significant 
challenge. Benefiting from MOP and DIP, PHTrack effectively 
uses physical material cues to tackle this attribute, achieving 
remarkable Pre and Suc scores of 0.894 and 0.583, respectively. 
OCC presents another tough attribute where objects are partially 

or fully occluded. Notably, PHTrack attains the highest Suc of 
0.618, outperforming SiamHT and SiamBAG by 3.8% and 2.1%, 
respectively, owing to its robust discrimination capabilities 
empowered by MOP and DIP. In conclusion, extensive 
experiments validate PHTrack’s efficacy in challenging scenes 
and highlight the role of prompt learning in HS tracking. 
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Fig. 15. Qualitative results. (a) basketball, attribute: FM, MB, OCC, and LR. (b) forest, attribute: BC and OCC. (c) fruit, attribute: BC and OCC. (d) 
rubik, attribute: DEF, IPR, and OPR. (e) student, attribute: IV and SV. (f) worker, attribute: SV, BC, and LR. Bounding boxes are displayed in the 
false color image. The current frame is shown in the top-left corner. 

G. Visual Comparisons 

Fig. 15 displays visual samples of trackers including BACF 
[61], GRM [82], SMAT [84], DeepHKCF [87], MHT [18], 
TSCFW [17], SiamOHOT [22], SiamBAG [20], and PHTrack. 
Benefiting from MOP and DIP, PHTrack excels at mitigating 
interferences and precisely determining object states such as 
position and scale. Qualitative findings illustrate that PHTrack 
consistently delivers high accuracy and robustness across diverse 
scenarios, making it an ideal candidate for HS object tracking 
applications.  

H. Ablation Studies 

The key contributions of PHTrack encompass MOP and DIP. 
To validate their impact, we evaluate five models: Model-1, 

Model-2, Model-3, Model-4, and Model-5. Notably, the baseline 
Model-1 is performed on HS videos by transforming them into 
false color videos, whereas the remaining models are tested on 
HS videos. 

1) Effectiveness of MOP: We conduct comparisons to evaluate 
the effectiveness of incorporating the multi-scale (MS) and WST 
architectures within the MOP. Detailed results and compositions 
are presented in Table V. Using Model-1 as a baseline, Model-2 
and Model-3 introduce MS and WST, respectively. With the 
addition of MS, Model-2 shows significant improvements in Pre 
and Suc by 6.6% and 7.1%, respectively, over Model-1. 
Similarly, incorporating MS in Model-3 shows gains of 1.6% in 
Pre and 0.9% in Suc, as shown in PHTrack. Furthermore, the 
addition of WST in Model-3 results in notable improvements of 
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Fig. 16. Overlap curves and tracking results of PHTrack. (a) basketball, attribute: OCC, FM, MB, and LR. (b) card, attribute: OCC and SV. (c) coke, 
attribute: BC, IPR, OPR, FM, and SV. (d) student, attribute: SV and IV. Tracked results are marked in green. 

TABLE V 

ABLATION EXPERIMENT ON THE EFFECTIVENESS OF MOP 

Model 
MOP 

Pre Suc PreI SucI 
MS WST 

Model-1 - - 0.846 0.586 n/a n/a 

Model-2  - 0.912 0.657 6.6% 7.1% 

Model-3 -  0.903 0.651 5.7% 6.5% 

PHTrack   0.919 0.660 7.3% 7.4% 

PreI and SucI are the Pre and Suc improvements of the current model compared 
to Model-1. 

TABLE VI 

ABLATION EXPERIMENT ON THE EFFECTIVENESS OF DIP 

Model SUM CAT DIP Pre Suc PreI SucI 

Model-1 - - - 0.846 0.586 n/a n/a 

Model-4  - - 0.801 0.545 -4.5% -4.1% 

Model-5 -  - 0.803 0.537 -4.3% -4.9% 

PHTrack - -  0.919 0.660 7.3% 7.4% 

5.7% and 6.5% in Pre and Suc, respectively, when compared to 
Model-1. Conversely, omitting WST in Model-2 leads to a 
decrease of 0.7% in Pre and 0.3% in Suc compared to PHTrack. 
A comparison between PHTrack and Model-1 demonstrates 
remarkable boosts of 7.3% in Pre and 7.4% in Suc. Experimental 
results underscore the efficacy of MOP, enabling PHTrack to 
exploit the foundation model and prior knowledge, consistently 
improving performance. 

2) Effectiveness of DIP: This section proves the effectiveness 
of DIP, as shown in Table VI. Common fusion strategies, i.e., 
element-wise summation (SUM) and concatenation (CAT), are 
incorporated into Model-4 and Model-5 for comparison with 
PHTrack with DIP. A comparison between PHTrack and Model-

4 reveals enhancements of 11.8% and 11.5% in Pre and Suc when 
SUM is replaced by DIP. Comparing Model-5 and PHTrack 
reveals a decrease of 11.6% and 12.3% in Pre and Suc when CAT 
is used instead of DIP. The challenges with element-wise 
summation and concatenation lie in their inability to effectively 
handle the significance of multi-modal features across various 
spatial and channel contexts. In contrast, DIP excels in treating 
features with diverse spatial and channel locations, thereby 
stimulating the foundation model to achieve competitive 
outcomes. Fig. 16 depicts overlap curves and tracking results of 
PHTrack, showcasing its capacity to sustain high overlap scores 
despite challenging scenes. Extensive experiments have revealed 
the beneficial effects of MOP and DIP, supporting the 
competitive performance demonstrated by PHTrack. 

V.CONCLUSION 

In this study, we design a Prompting for Hyperspectral Video 
Tracking framework, denoted as PHTrack. The goal is to 
alleviate data anxiety by efficiently leveraging the capabilities of 
the foundation model through prompt learning. Specifically, an 
MOP is proposed to learn multi-modal generation from HS 
images to extract rich spectral information. Guided by MOP, our 
framework bridges band gaps, enhances model adaptation, and 
leverages prior knowledge. Additionally, a DIP is developed to 
integrate cross-modal features, facilitating feature fusion and 
efficiently addressing the challenge of huge volumes. Extensive 
experiments confirm the effectiveness of the proposed method.  

Nevertheless, the computational demands inherent in the 
current framework represent an obstacle in dynamic 
environments requiring instantaneous response times. This 
underscores the imperative for future research to focus on 
refining the model structure to achieve higher efficiency while 
maintaining accuracy. Furthermore, developing a unified 
spectral-spatial-temporal framework for HS tracking may be a 
promising avenue.  
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