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ABSTRACT  
Multimodal change detection (MCD) combines multiple remote sensing 
data sources to realize surface change monitoring, which is essential for 
disaster evaluation and environmental monitoring. However, due to the 
‘incomparable’ features in multimodal data, traditional change 
detection methods for unimodal (homogenous) data no longer apply. 
To address this issue, this paper proposes a novel MCD method with 
global structure graph mapping (GSGM) which extracts the 
‘comparable’ structural features between multimodal datasets and 
constructs a global structure graph (GSG) to express the structure 
information for each of the multi-temporal images, which are then 
cross-mapped to the other data domain. The change intensity (CI) is 
determined by measuring the change of GSGs after mapping and the 
differences between GSGs and mapped GSGs. The forward and 
backward CI maps (CIMs) are then fused with the latent low-rank 
representation method (LLRR), and the change map (CM) is obtained by 
threshold segmentation. Experiments on five multimodal and four 
unimodal datasets demonstrate the effectiveness and robustness of the 
proposed method (source code is made available at https://github.com/ 
rshante0426/GSGM).
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1. Introduction

1.1. Background

Change detection (CD) detects and analyzes changes on the Earth’s surface by acquiring remote 
sensing images from different times in the same geographical area (Han et al. 2024; Reba and 
Seto 2020). It is widely used in urban studies (Y. Tang and Zhang 2017; Y. Tang et al. 2024; 
Y. Chen et al. 2022; Y. Chen et al. 2022; Y. Chen et al. 2024), forest resource monitoring (Wei 
et al. 2023), and disaster warning and rescue (Brunner, Lemoine, and Bruzzone 2010; 
D. Wang et al. 2022). Nowadays, the majority of CD techniques are used for unimodal CD 
(UCD), such as homogenous multispectral, hyperspectral, and synthetic aperture radar (SAR) 
images (Bovolo and Bruzzone 2007; Saha, Bovolo, and Bruzzone 2019; H. Tang, Wang, and 
Zhang 2022). These images are acquired from the same sensor and have the same image 
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characteristics, allowing for the extraction of change information through direct comparison. 
However, in many practical applications, it is difficult to obtain a set of high-quality unimodal 
images due to the influence of satellite performance, the environment, etc. The surge in remote 
sensing satellites has facilitated the integration of multimodal satellite data (Fan, Hou, and Shi 
2021; Rajakumar and Satheeskumaran 2022). This integration, which leverages the fusion of 
imagery from various sensors, has significantly boosted the Earth observation capabilities of 
remote sensing images (Hong et al. 2023). As a result, it has attracted considerable interest 
within the academic community, highlighting the potential for more comprehensive and 
detailed insights into our planet’s conditions(Hong et al. 2023; Hong et al. 2024). Moreover, 
it is difficult for UCD methods to achieve satisfactory CD results when the data comes from 
different satellites.

Multimodal CD (MCD) is defined by its analysis of pre-event and post-event images that orig
inate from different sensor types or distinct satellites. By harnessing the power of diverse satellite 
imagery, MCD can combine optical images with SAR images, or compare images from different 
satellites such as Sentinel-2 and GaoFen-2. The essence of MCD lies in the use of pre-event and 
post-event data acquired by sensors that vary in nature or platform, which introduces a range of 
advantages over UCD include: 1) it is capable of concurrent image capture, enabling the fusion 
of complementary information from multiple sources (e.g. the spectral and textural information 
from optical images, and the all-weather imaging capabilities of SAR); 2) obtaining pre- and 
post-event images within a compressed timeframe reduces disaster response latency. As a result, 
MCD has become a popular research topic. In recent years, it has been explored through various 
methods, which can be divided into three categories based on their principles: image space trans
formation, feature space unification, and similarity measure.

1) Image space transformation. To transform multimodal images to each other’s image space 
and extract the change information, most of these methods build the spatial transformation 
relationship between the images using a statistical model. (Z. Liu et al. 2018) constructed the 
image space transformation relationship between optical and SAR images by manually selecting 
samples from unchanged regions and obtained results by directly comparing the transformed 
images with the original images. To reduce the reliance on a priori information, (Luppino 
et al. 2019)) established a multimodal image space transformation relationship by creating 
pseudo-samples using affinity matrices and four regression models. Additionally, deep learn
ing-based MCD methods have been proposed, such as the coupling translation network 
(CPTN) (Gong et al. 2019) and adversarial cyclic encoders network (ACE) (Luppino et al. 
2022). However, due to the differences between multimodal images and the reliance on the col
lection of training samples or pseudo-samples, there are still significant variations between the 
original and transformed images.

2) Feature space unification. Multimodal images obtained using various sensors possess 
dissimilar imaging characteristics. Thus, to enable direct comparison, the images can be 
transformed into a unified feature space. This allows identical geographical objects across 
multimodal images to share common spectral features. This type of method can be divided 
into category feature space unification and latent feature space unification. Category feature 
space unification, also known as image classification-based methods, assigns the same cat
egory label to the same image objects, such as hierarchical extreme learning machine classifi
cation (HELMC) (Han et al. 2021) and multitemporal segmentation and compound 
classification (MS-CC) area (L. Wan, Xiang, and You 2019). However, these methods are lim
ited by the classification accuracy of multimodal images, particularly SAR images affected by 
coherent speckle noise. Latent feature space unification enables the comparison of multimo
dal images by projecting them into a unified feature space, and is mainly based on deep learn
ing, such as the symmetric convolutional coupling network (SCCN) (J. Liu et al. 2018), 
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approximately symmetrical deep neural network (ASDNN) (Zhao et al. 2017), two-stage joint 
feature learning (TSJFL) (Han, Tang, and Chen 2022), iterative feature mapping network 
(IFMN) (Zhan et al. 2018), commonality autoencoder change detection (CACD) (Wu et al. 
2022), conditional generative adversarial network (CGAN) (Gong et al. 2017), logarithmic 
transformation feature learning (LTFL) (Zhan et al. 2018), etc. However, the existence of 
changes makes it challenging to uniformly match the spectral properties of all image objects 
in multimodal images.

3) Similarity measure. This type of method distinguishes between changed and unchanged 
image pixels by measuring the similarity of certain features of a multimodal image, with a 
lower similarity indicating a higher probability of change. (Mercier, Moser, and Serpico 
2008) constructed the relationships of unchanged image pixels based on copula theory and 
extracted change information using the Kullback-Leibler distance. Wan et al. (L. Wan, 
Zhang, and You 2018) detected the changed regions by comparing the ‘ranked histogram’ fea
tures of optical and SAR images. (Alberga 2009) obtained the changed regions by calculating 
the similarity of multimodal images using mutual information. Additionally, some researchers 
have calculated the similarity of the grayscale features of multimodal images by constructing 
models, such as the multidimensional statistical model (MSM) (Prendes et al. 2015), energy- 
based model (EBM) (Touati and Mignotte 2018), convolution model-based mapping 
(CMBM) (Touati, Mignotte, and Dahmane 2019), multimodal change detection Markovian 
model (M3CD) (Touati, Mignotte, and Dahmane 2020), and graph-based fusion (GBF) (Jime
nez-Sierra et al. 2020). Despite the potential of existing methods to accurately measure change 
information in complex image change scenes, the construction of appropriate features is often 
challenging. Furthermore, the similarity measurement between multimodal images is further 
complicated by the presence of significant noise in SAR images, leading to an increased 
false detection rate.

1.2. Motivation and contribution

Despite the considerable differences in imaging features between multimodal images, some 
researchers have proposed that there are common structural features that can be expressed 
through a graph based on the self-similarity attributes of the image. In Sun, Lei, Li, et al. 
(2021), a non-local patch-based graph (NLPG) is constructed in two images separately, and 
the changes in the NLPG are produced by cross-mapping the pre- and post-temporal images. 
Based on the NLPG, they proposed a novel graph difference metric formula to calculate the 
divergence between the structure graphs of multimodal images. Additionally, Mignotte (2020) 
extracted the structural fractal features of the image and mapped them to the domain of the 
other image, then employed a fractal decoding strategy to obtain the change information and 
combined it with Markovian segmentation to identify the changed regions. Subsequently, the 
iterative robust graph and Markovian co-segmentation method (IRG-McS) was proposed 
(Sun et al. 2021), which acquires a graph structure by updating the graph, obtains the optimal 
difference graph through iteration, and combines it with Markovian segmentation to obtain 
the change map (CM). Moreover, the sparse-constrained adaptive structure consistency-based 
method (SCASC) builds a structural consistency image regression model and uses the Markov 
segmentation model to differentiate changed and unchanged regions in different images (Sun 
et al. 2022). Chen et al. (2022) used graph autoencoders to characterize the structural features 
of multimodal images and extract the changed regions by comparing the structural relationships 
across different modalities.

Although these methods demonstrate the efficacy of the structure graph method for MCD, 
some problems remain: 1) Existing methods, when constructing structural graphs, 
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predominantly concentrate on the average pixel differences between image patches, overlook
ing the overall similarity of the patches. This focus can amplify noise and outliers, leading to 
inaccurate similarity measurements. Additionally, these methods often rely on non-local infor
mation, which does not capture the full context of the image, including the layout and 
relationships between objects, resulting in an incomplete representation of image structural 
features. 2) There is a lack of adequate consideration for structural changes, with a uniform 
weight applied to all image patches for change measurement. This approach fails to account 
for the nuanced differences between structural features and their mapped counterparts within 
the same image domain. Different image patches, representing various land cover types such as 
buildings, vegetation, and water bodies, respond differently to changes, and their significance 
varies. A uniform weight does not consider this diversity, which can lead to over-sensitivity 
or neglect of certain land cover types, ultimately affecting the overall performance of CD. 
3) The current focus on local feature fusion in change intensity maps (CIMs) overlooks 
the importance of global features. While local features are prone to noise and outliers, 
which can result in false positives, global features offer more stable information that enhances 
the robustness of CD.

In this paper, we propose a global structure graph mapping (GSGM)-based MCD method that 
fully utilizes the global structure information of images and improves the accuracy of CD. It seg
ments the image into overlapping patches and forms a global structure graph (GSG) that opti
mally employs global patches to represent the image’s structural features. Vertices in GSG mainly 
consist of target and vertex patches (for convenience, image patches in GSG besides the target 
ones are referred to as ‘vertex patches’ in this paper). The proposed GSGM exploits the overall 
similarity between target and vertex patches to construct a robust structure graph for each of the 
multimodal images, which are mapped to each other’s image domains to explore the change 
information of multimodal images. Subsequently, a weighted formula is established to calculate 
the change intensity (CI) of the image, which stems from both the GSGs post-mapping and 
the disparities between the GSGs and their corresponding mapped versions within the 
same image domain. Furthermore, GSGM fuses the forward and backward CIMs using the 
low-rank representation fusion technique to enhance the expression of CI, and the final CM 
is obtained by threshold segmentation. In summary, the contributions of this paper are as 
follows: 

1) The similarity at the patch level between image patches is assessed, offering a nuanced under
standing of their relationship. A GSG is introduced to encapsulate the image’s structural fea
tures, providing a holistic view of the image’s layout and structure. This approach, which 
focuses on both local details and global composition, allows for a comprehensive representation 
of image content. The GSG evaluates both similarities and dissimilarities among vertices, which 
aids in more accurate change localization.

2) A novel weighted structural difference formula has been developed to more precisely capture the 
significance of individual image patches in change measurement. This method assigns variable 
weights to each patch, enabling a more granular assessment of structural changes. Furthermore, 
the changes in the GSGs after mapping, as well as discrepancies between the GSGs and mapped 
GSGs in the same image domain, are considered, enhancing the robustness of the change 
measurement approach.

3) The methodology also incorporates low-rank representation to fuse forward and backward 
CIMs, integrating global features such as the image’s overall structure or background patterns 
with local features that capture detailed information. This integration results in a more robust 
CIM.

4) The proposed GSGM is fully unsupervised and does not require any labeled data, and the effec
tiveness of GSGM is validated by experiments conducted across nine datasets, where it was com
pared with state-of-the-art methods.
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2. Methodology

Consider two co-registered multimodal images X = {x(i, j, b)|1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ b ≤ BX} 
and Y = {x(i, j, b)|1 ≤ i ≤ H, 1 ≤ j ≤W, 1 ≤ b ≤ BY}. Here, H and W denote the length and 
width of the images, and BX and BY represent the number of bands in the image X and Y respect
ively. Recognizing that multimodal images X and Y are from distinct data domains, a direct com
parison of their spectral characteristics is impractical. However, in regions that remain unchanged, 
they share consistent structural attributes. To explore these attributes, we utilize GSG encoding 
techniques, which encode the structural properties of X and Y into their respective graphs, more 
accurately capturing the global structural features of the images. By creating GSGs that capture 
the inherent structural similarities and differences between X and Y, we can effectively extract 
the nuances of changes in multimodal imagery. These structural attributes are manifested in the 
connectivity patterns between vertices and neighbor vertices within the graph. Changes in a region 
will consequently modify the connectivity patterns of the corresponding vertices. In constructing 
the structural graph, each image patch is considered a distinct vertex, encapsulating features 
such as color and texture that represent specific image areas. The relationships among these vertices 
unveil the images’ patterns, hierarchies, and spatial arrangements. Comparing the GSGs of X and Y 
allows us to quantify the changes between the multimodal images. As illustrated in the framework 
(Figure 1), the proposed method encompasses three key stages: (1) construction of a GSG using 
image patches as the fundamental processing units; (2) evaluation of image CI through the for
ward/backward mapping of the GSG; and (3) generation of a CM through CIMs fusion and 
threshold segmentation.

2.1. GSG construction

Consider a target patch in the image X, which is defined as pX
(i,j) = {X(i − ps:i+ ps, j − ps:j+

ps, 1:BX)}, 1 ≤ i ≤ H, 1 ≤ j ≤W, whose width is ws = 2ps + 1. To make full use of the structural 
features of images, a GSG G(i,j) is constructed to represent the global structural features of 

Figure 1. Framework of GSGM-based MCD method.
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the images in this paper. Taking the target patch pX
(i,j) as an example, its GSG GX

(i,j) is defined as 
follows:

GX
(i,j) = {VX

(i,j), EX
(i,j), wX

(i,j)}

VX
(i,j) =

pX
(i,j), pX

(m,n); (m, n) [ VX
(m,n),

(i, j) = (m, n)

􏼨 􏼩

|VX
(i,j)| = N

EX
(i,j) = {(pX

(i,j), pX
(m,n))|p

X
(i,j), pX

(m,n) [ VX
(i,j)}

wX(pX
(i,j), pX

(m,n)) = sim(pX
(i,j), pX

(m,n))∀(pX
(i,j), pX

(m,n)) [ EX
(i,j)

(1) 

where VX
(i,j) denotes the vertex of GSG GX

(i,j), and each vertex patch pX
(m,n) is connected to target 

patch pX
(i,j) through edge EX

(i,j). In GSG GX
(i,j), the number of vertex patches is N. The similarity 

between each vertex patch pX
(m,n) and target patch pX

(i,j) denotes its connection weight wX
(i,j)and 

sim( · ) represents the similarity calculation operation. VX
(m,n)is an index set of vertex patch 

pX
(m,n) arranged in descending order according to the similarity between vertex patch pX

(m,n) 
and target patch pX

(i,j).
Similarly, GSG GY

(i,j) of image Y can also be constructed.

2.2. Patch similarity measure

The high correlation between adjacent pixels in remote sensing images has been widely acknowl
edged. However, traditional methods for measuring image patch similarity are based on the cal
culation of the difference between independent pixels, which makes them vulnerable to the 
influence of noise, thus leading to inaccurate similarity measurements. To address the similarity 
measurement of pixel difference, this paper introduces the structural similarity index measure 
(SSIM) (Z. Wang et al. 2004), which evaluates image similarity by taking into account image 
brightness, contrast, and structure. SSIM is defined as follows:

SSIM(x, y) = [l(x, y)]a[c(x, y)]b[s(x, y)]g (2) 

where

l(x, y) =
2mxmy + C1

m2
x + m2

y + C1
(3) 

c(x, y) =
2sxsy + C2

s2
x + s2

y + C2
(4) 

s(x, y) =
sxy + C3

sxsy + C3
(5) 

where l(x, y), c(x, y), and s(x, y)represent the brightness comparison function, contrast com
parison function, and structure comparison function of image patches x and y respectively; 
a . 0, b . 0, and g . 0 are the adjust parameters; mx and my are the mean values of x 
and y respectively; sx and sy are the variance of x and y respectively; sxy denotes the 
covariance of x and y; and C1, C2, and C3 are constant to keep l(x, y), c(x, y), and s(x, y) stable. 
The value of SSIM ranges from 0 to 1. The greater the value, the more similar the two 
patches. It is generally posited that l(x, y),c(x, y), and s(x, y) make equal contributions to 
SSIM, thereby leading to a = b = g = 1 being conventionally set at unity (Z. Wang et al. 
2004).
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2.3. CI measure

GSGs GX
(i,j) and GY

(i,j) are constructed in images X and Y respectively, and express the structural fea
tures of the images together with the changes between them. However, due to the differences in the 
imaging characteristics of multimodal images, the changes between GSGs cannot be effectively 
measured by a direct comparison. To accurately measure the differences in multimodal images 
and circumvent the imaging discrepancies between them, GSGs GX

(i,j) and GY
(i,j) are mapped to 

image domains Yand X respectively to obtain their maps GXmap

(i,j) and GYmap

(i,j) for the comparison of 
multimodal images in the same image domain. As an example, GSG GX

(i,j) is mapped into image 
Y (forward mapping), and its mapped GSG GXmap

(i,j) is defined as follows:

GXmap

(i,j) = {VXmap

(i,j) , EXmap

(i,j) , wXmap

(i,j) }

VXmap

(i,j) =
pY

(m̃,ñ); (m̃, ñ) [ VX
(m,n),

(i, j) = (m̃, ñ)

􏼨 􏼩

|VXmap

(i,j) | = N

EXmap

(i,j) = {(pY
(i,j), pY

(m̃,ñ))|p
Y
(i,j), pY

(m̃,ñ) [ VXmap

(i,j) }

wXmap (pY
(i,j), pY

(m̃,ñ)) = sim(pY
(i,j), pY

(m̃,ñ))∀(pY
(i,j), pY

(m̃,ñ)) [ EXmap

(i,j)

(6) 

By forward mapping, the connectivity between the vertices of mapped GSG GXmap

(i,j) is consistent with 
GSG GX

(i,j), but the patches of the mapped GSG GXmap

(i,j) are all represented using the pixel values of 
image Y. This can indicate that GSG GXmap

(i,j) and GSG GY
(i,j) are in the same image domain, thus the 

CI of the region where the target patch pY
(i,j) is located can be measured. In this paper, we consider 

that the structural differences between GXmap

(i,j) and GY
(i,j) are mainly composed of the following two parts:

1) Intrinsic change of GSG GXmap

(i,j) . If the region represented by target patch pY
(i,j) remains 

unchanged, the internal pattern of the mapped GSG GXmap

(i,j) is stable; that is, the similarity of vertex 
patches to target patch pY

(i,j) is stable. Otherwise, once the region represented by target patch pY
(i,j) 

changes, the similarity of vertex patches to target patch pY
(i,j)would change, and the change infor

mation would express the intrinsic change of GSG GXmap

(i,j) . This change is calculated as follows:

dif Y1
(i,j) =

1
N

􏽘

(m,n)s[VY
(m,n)

(m̃,ñ)s[VX
(m̃,ñ)

|sim(pY
(i,j), pY

(m,n)s ) − sim(pY
(i,j), pY

(m̃,ñ)s )|

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

(7) 

where (m, n)s [ VY
(m, n) denotes the index of vertex patch pY

(m,n)s that ranks s-th in similarity to tar
get patch pY

(i,j) in vertex VY
(i,j), and (m̃, ñ)s [ VX

(m, n) represents the index of vertex patch pY
(m̃,ñ)s that 

ranks s-th in similarity to target patch pX
(i,j) in vertex VXmap

(i,j) . The change in the region represented by 
target patch pY

(i,j) can be calculated from the difference in the similarity of vertex patches pY
(m,n)s and 

pY
(m̃,ñ)s with target patch pY

(i,j). For instance, if vertex patch pX
(m,n)s in GSG GX

(i,j) exhibits a high simi
larity to target patch pX

(i,j), and the region represented by target patch pY
(i,j) has changed, vertex patch 

pY
(m̃,ñ)s in GSG GXmap

(i,j) will display a low similarity to target patch pY
(i,j), resulting in a diminished value 

for sim(pY
(i,j), pY

(m̃,ñ)s ). Conversely, in GSG GY
(i,j), vertex patch pY

(m,n)s and target patch pY
(i,j) exhibit a 

high similarity, and sim(pY
(i,j), pY

(m,n)s ) has a greater value. Consequently, the disparity between 

INTERNATIONAL JOURNAL OF DIGITAL EARTH 7



sim(pY
(i,j), pY

(m̃,ñ)s ) and sim(pY
(i,j), pY

(m,n)s ) is more noticeable, accentuating the change of the region 
represented by target patch pY

(i,j).
It is worth noting that the top and bottom similarity vertex patches are often sensitive to the 

change in the region represented by the target patch. This is because, once the region represented 
by target patch pX

(i,j) changes, the similarity between the most and least similar vertex patch pX
(m,n) in 

mapped graph GXmap

(i,j) and target patch pY
(i,j) will change with high probability. To further highlight 

changes, we employ a weighting approach to augment the change in the similarity of vertex patch 
pY

(m,n)s to target patch pY
(i,j), so (7) can be reformulated as follows:

dif Y1
(i,j) =

1
N

􏽘

(m,n)s[VY
(m,n)

(m̃,ñ)s[VX
(m̃,ñ)

|bY1
(m,n)s × sim(pY

(i,j), pY
(m,n)s ) − bY1

(m̃,ñ)s × sim(pY
(i,j), pY

(m̃,ñ)s )|

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

(8) 

bY1
(m,n)s = exp l× sim(pY

(i,j), pY
(m,n)s ) −

1
N

􏽘

(m,n)s[VY
(m,n)

sim(pY
(i,j), pY

(m,n)s )

⎛

⎝

⎞

⎠

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎛

⎝

⎞

⎠ (9) 

bY2
(m̃,ñ)s = exp l× sim(pY

(i,j), pY
(m̃,ñ)s ) −

1
N

􏽘

(m̃,ñ)s[VX
(m,n)

sim(pY
(i,j), pY

(m̃,ñ)s )

⎛

⎝

⎞

⎠

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

􏼌
􏼌
􏼌
􏼌
􏼌
􏼌

⎛

⎝

⎞

⎠ (10) 

where bY1
(m,n)s and bY2

(m̃,ñ)s donate the variation weight of vertex patches pY
(m,n)s and pY

(m̃,ñ)s respectively; 
and l is the weight coefficient of bY1

(m,n)s and bY2
(m̃,ñ)s .

2) Difference between mapped GSG GXmap

(i,j) and GSG GY
(i,j). Once a region in the image has changed, 

the structural features of mapped GSG GXmap

(i,j) and GSG GY
(i,j) will be dissimilar, and the structural 

difference between mapped GSG GXmap

(i,j) and GSG GY
(i,j) will reflect the change in the region. This 

structural difference can be calculated as follows:

dif Y2
(i,j) = exp (l) −

1
N

􏽘

(m,n)s[VY
(m,n)

(m̃,ñ)s[VX
(m̃,ñ)

|bY1
(m,n)s × sim(pY

(m,n)s , pY
(m̃,ñ)s )|

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

(11) 

To be more specific, if the region represented by target patch pY
(i,j) remains unchanged, then vertex 

patches pY
(m,n)s and pY

(m̃,ñ)s are likely to retain a high similarity to target patch pY
(i,j), resulting 

insim(pY
(m,n)s , pY

(m̃,ñ)s ) being a large value and dif Y2
(i,j) being a small value. However, if the region rep

resented by target patch pY
(i,j) changes, the similarity of vertex patch pY

(m̃,ñ)s to target patch pY
(i,j) will 

likely change, causing sim(pY
(m,n)s , pY

(m̃,ñ)s ) to be a small value and dif Y2
(i,j) to be a large value with a high 

probability, thus signifying a significant change in the region represented by target patch pY
(i,j).

The final structural difference dif Y
(i,j) of the region represented by target patch pY

(i,j) is the aggre
gate of the two structural differences mentioned above:

dif Y
(i,j) = dif Y1

(i,j) + dif Y2
(i,j) (12) 

The mean value of structural difference FY
(s,t) of all encompassed image pixels 

(s, t), 1 ≤ s ≤ H, 1 ≤ t ≤W is taken as the change information of pixels (s, t), and the forward 
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mapping CIM CIM fw is calculated as follows:

CIM fw
(s,t) =

1
|FY

(s,t)|

􏽘

dif Y
(i,j)[FY

(s,t)

dif Y
(i,j) (13) 

In the same way, the backward mapping CIM CIMbw can be obtained by mapping GSG GY
(i,j) to 

image domain X .
Setting the target patch’s step size to Dp = ps will accelerate the calculation, and the 

search step size of the vertex patch is set to Dv = ⌊aDv ×min (H/2, W/2)⌋, where aDv donates 
the step size factor which regulates the step size, while ⌊·⌋ is the downward integer operation.

2.4. CIMs fusion

The CI for each image pixel is represented by CIMs CIM fwandCIMbw which are generated from 
image domains D fw and D fw respectively. The change intensities of the same index in CIMs 
CIM fw and CIMbw can differ because images X and Y are from distinct data modalities. Therefore, 
in order to obtain robust CIMs, CIM fw and CIMbw must be fused, and the global and local structural 
features of CIMs CIM fw and CIMbware considered for CIMs fusion.

Inspired by latent low-rank representation (LLRR) (G. Liu and Yan 2011), we decompose 
CIMs CIM fwand CIMbwinto a low-rank part (global structural), significance part (local struc
tural), and image noise part. The CIM decomposition is obtained by the following optimization 
function:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + l‖E‖1

s.t. D = DZ + LD+ E
(14) 

where D is the CIM, Z represents the low rank coefficient, L denotes the significance coefficient, l 
is a positive parameter, and ‖ · ‖∗ and ‖ · ‖1are the nuclear norm and l1 norm respectively.

To facilitate the solution, (14) is equivalent to the following equation:

min
Z,L,J,S,E

‖J‖∗ + ‖S‖∗ + l‖E‖1

s.t. D = DZ + LD+ E, Z = J, L = S
(15) 

Based on an augmented Lagrange multiplier (ALM), (15) can be converted into an uncon
strained augmented Lagrange function:

L(J, S, Z, L, E, h) = ‖J‖∗ + ‖S‖∗ + l‖E‖1

+ tr(hT
1 (D − DZ − LD − E))

+ tr(hT
2 (Z − J))+ tr(hT

3 (L − S))

+
m

2
(‖D − DZ − LD − E‖2

F)

+
m

2
(‖Z − J‖2

F + ‖L − S‖2
F)

(16) 

where tr( · )and ‖ · ‖F are the trace and Frobenius norm of the matrix, h is the Lagrange multiplier, 
and m is the penalty parameter. (16) achieves the update of J, S, Z, L, and E respectively by fixing 
other parameters.

With the above calculation, the low-rank coefficients Z fw, Zbw and significance coefficients L fw, 
Lbw of CIMs CIM fw and CIMbw can be obtained. Mean weighted fusion is used for the low-rank part 
of the CIMs in order to preserve the low-rank information:

CIM fusion
Z =

1
2

(Z fw × CIM fw + Zbw × CIMbw) (17) 
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Furthermore, to preserve the significance features of the CIMs and highlight the changed 
regions, the significance part is fused using the square weighted fusion method:

CIM fusion
L =

1
2

((L fw × CIM fw)2
+ (Lbw × CIMbw)2) (18) 

The fused CIM CIM fusion is calculated as follows:

CIM fusion = CIM fusion
Z + CIM fusion

Z (19) 

2.5. CM generation

To further distinguish the changed and unchanged regions, the CM is obtained using the threshold 
segmentation method proposed in (Hou, Wang, and Liu 2017):

CM(s,t) =
1, if CIM fusion

(s,t) ≥ z×mean(CIM fusion)
0, otherwise

􏼚

(20) 

where z represents the user adjustment threshold parameter and mean( · )donates the mean value 
operation. The GSGM framework is summarized in Table 1:

3. Experiments and discussion

In this section, nine experimental datasets are introduced and used in an accuracy evaluation with 
several comparison methods, followed by the experimental results and parameter analysis of the 
proposed GSGM.

3.1. Datasets

The effectiveness of the proposed GSGM in MCD and its applicability in UCD are validated using 
five multimodal datasets (datasets #1–#5) and four unimodal datasets (datasets #6–#9). Images from 
different satellite types are included in the multimodal datasets, such as dataset #1 (optical and SAR 
images), dataset #2 (LiDAR and optical images), datasets #3 and #5 (images with the same sensor 
type but from different sensors), and dataset #4 (optical and normalized difference vegetation index 
(NDVI) images). The unimodal data consists of two optical images and two SAR images (Figure 2). 
All images underwent preprocessing, such as optical imagery (radiometric calibration, geometric 

Table 1. GSGM framework.

GSGM

Input: images X and Y, parameters of ps , l, aDv and z 
1. GSG Construction: 
Calculation of patch similarity using SSIM; 
Construct GSGs GX

(i,j) and GY
(i,j) . 

2. CI Measure: 
Calculation of intrinsic change of GSG GXmap

(i,j) ; 
Calculation of difference between mapped GSG GXmap

(i,j) and GSG GY
(i,j) ; 

Calculation of forward CIM CIM fw and backward CIM CIMbw . 
3. CIMs fusion: 
Fusion of low-rank part (global structure); 
Fusion of significance part (local structure). 
4. CM Generation: 
Compute the binary CM with (20).
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calibration, atmospheric correction, etc.) and SAR imagery (radiometric calibration, geometric cali
bration, filtering, interferometric processing, etc.). These preprocessing steps are intended to elim
inate or reduce influence from sensors, platforms, or the environment in order to make the images 
more suitable for further analysis.

As shown in Table 2, the datasets used in this study had a large time window (the earliest image 
was acquired in December 1999 and the most recent in May 2018), a variety of sensor images with 
resolutions ranging from 2 m (dataset #6) to 30 m (dataset #5) in different regions of the world, and 
image sizes ranging from 300 × 412 to 3,500 × 2,000 covering multiple change scenarios (e.g. urban 
construction, flooding, river expansion, etc.). The robustness and efficiency of the proposed GSGM 
may be demonstrated by the nine datasets.

Figure 2. Datasets #1–#9; each dataset from left to right is the pre-event image, post-event image, and reference CM.
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3.2. Evaluation metrics

Empirical receiver operating characteristics (ROC) curves are used to evaluate the effectiveness of 
the CIMs produced by each comparison method. ROC curves represent the estimated pixel-wise 
probability of detection (PD) as a function of the probability of false alarm (PFA) by varying the 
binary segmentation threshold. The area under the curve (AUC) of the ROC curves is determined 
as the evaluation metric. For binary CM, Overall accuracy (OA), Kappa coefficient (KC), and F1- 
measure (F1) are used as the evaluation metrics:

OA = (TP+ TN)/N (21) 

KC = (OA-PRE)/(1-PRE) (22) 

where

PRE =
(TP+ FN)(TP+ FP)+ (TN+ FP)(TN+ FN)

N2
p

(23) 

F1 = (2∗P∗R)/(P+ R) (24) 

where

P = TP/(TP+ FP) (25) 

R = TP/(TP+ FN) (26) 

where Np represents the total number of pixels in the image; TP means true positives, representing 
the number of correctly detected changed pixels; TN means true negatives, representing the number 
of correctly detected unchanged pixels; FP means false positives, representing the number of incor
rectly detected changed pixels; and FN means false negatives, indicating the number of incorrectly 
detected unchanged pixels.

Table 2. Descriptions of datasets. In the ‘size’ column, the numbers within the parentheses indicate the number of bands for the 
imagery of the second time phase. For example, in dataset #1, 600 × 600 × 3(1) signifies that the imagery from the first time 
phase has 3 bands, while the imagery from the second time phase has 1 band.

Dataset Sensor Size(pixels) Date Location Event (& Spatial resolution)

#1 Google Earth/ 
Sentinel-1

600 × 600 × 3(1) Dec. 1999–Nov. 
2017

Chongqing, China River expansion (10 m)

#2 QuickBird/LiDAR 400 × 400 × 3(1) Nov. 2007–June 
2011

San Francisco, USA Urban construction (0.5 m)

#3 Landsat-8/Sentinel-1 3,500 × 2,000 × 11(3) Jan. 2017–Feb. 
2017

Sutter County, 
USA

Flooding (≈15 m)

#4 Spot/NDVI 990 × 554 × 3(1) 1999–2000 Gloucester, 
England

Flooding (≈25 m)

#5 Landsat-5/Google 
Earth

300 × 412 × 1(3) Sept. 1995–July 
1996

Sardinia, Italy Lake expansion (30 m)

#6 WorldView-3 1,431 × 1,431 × 3 2010–2015 Shenzhen, China Urban construction (2 m)
#7 Zi-Yuan 3 458 × 559 × 3 2014–2016 Wuhan, China Urban construction (5.8 m)
#8 Sentinel-1 516 × 700 × 1 Nov. 2017–May 

2018
Chongqing, China River expansion (10 m)

#9 Sentinel-1 898 × 1,500 × 1 Nov. 2017–May 
2018

Chongqing, China River expansion (10 m)
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3.3. Comparison methods

In order to prove the effectiveness of the proposed GSGM, five novel methods are selected as com
parison methods: 

1) LTFL (Zhan et al. 2018): Logarithmic transformation feature learning framework (LTFL) dis
plays the stack denoising autoencoder to extract high-dimensional features from remote sensing 
images, and selects reliable samples to train a neural network classifier to distinguish between 
changed and unchanged regions according to the classifier.

2) INLPG (Sun et al. 2022): Improved nonlocal patch-based graph (INLPG) builds a K-nearest 
neighbor (KNN) graph in the two temporal images respectively, and compares the KNN 
graph in the same image domain to extract the change information.

3) GBF (Jimenez-Sierra et al. 2020): Graph-based fusion (GBF) uses the Laplacian matrix of the 
regularized graph to minimize the graph similarity of the two temporal images and highlight 
the changed regions.

4) IRG-McS (Sun et al. 2021): Iterative robust graph and Markovian co-segmentation models 
(IRG-McS) construct a KNN graph to represent the structure of each image, and the CIM is 

Figure 3. CIMs of different methods on multimodal datasets: (a1–a5) LTFL; (b1–b5) INLPG; (c1–c5) GBF; (d1–d5) IRG-McS; (e1–e5) 
SCASC; (f1–f5) SRGCAE; (g1–g5) GSGM.
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obtained through the cross-mapping of the graph. On the basis of Markovian co-segmentation, 
the construction of the KNN graph and change information are iteratively optimized.

5) SCASC (Sun et al. 2022): Sparse-constrained adaptive structure consistency (SCASC) is used to 
construct a regression model of the structure consistency image, and the prior sparse knowledge 
from the CIM is used to distinguish between changed and unchanged regions.

6) SRGCAE (H. Chen et al. 2022): Structural relationship graph convolutional autoencoder 
(SRGCAE) measures the similarity of multimodal image structural relationships to extract 
the changes.

3.4. Experiments

3.4.1. Experiments on multimodal datasets
Figure 3 depicts the CIMs of various methods on multimodal datasets #1–5. The comparison 
methods in dataset #1 generally highlight the changed regions, but the intensity of changes var
ies significantly across the various changed regions. Among the comparative methods, except 
for SRGCAE, all other methods failed to detect changes in the right half of dataset #2. The 
CIMs of the other comparison methods did a better job of displaying the changed regions in 
dataset #3 than INLPG and GBF, although there are some gaps in the changed regions. The 
CI difference between the changed and unchanged regions of the CIMs of INLPG in dataset 
#4 is not significant. The other comparison methods can almost completely highlight the 
regions that have changed in dataset #4, but they have more ‘pseudo-change’ patches in the 
unchanged regions. IRG-MCS and SCASC show good CIMs in dataset #5, but some FPs remain. 
GSGM can effectively reflect the structural changes of multimodal data by constructing the 
GSG. The ROC curves of the CIMs for different methods on datasets #1–#5 are plotted in Figure 
4, and it can be seen that the proposed GSGM achieves optimal ROC curves. Therefore, the 
CIMs of GSGM on datasets #1–#5 can effectively highlight the changed regions while preser
ving their internal integrity, as well as having the fewest ‘pseudo-change’ patches in the 
unchanged regions.

The CMs of different methods on the multimodal datasets are shown in Figure 5. In dataset #1, 
LTFL has more FPs due to the presence of shadow differences in the land parts of the images. 
INLPG, GBF, IRG-MCS, SCASC, and SRGCAE overcome the effects of image shadowing and 
have fewer FPs, but there are large

numbers of FNs. GSGM could obtain the most complete changed regions while suppressing 
image shadows. Dataset #2 mostly captures changes in an urban environment. None of the other 
comparison methods, excluding LTFL, were able to identify the changes in the right half of the 
region in dataset #2, and GSGM has fewer FPs than LTFL. Datasets #3 and #4 show changes as 
a result of flooding. Visually, LTFL, INLPG, and GBF all show significant FPs, whereas IRG- 
MCS, SCASC, and SRGCAE have comparatively fewer FPs, and GSGM comes closest to the refer
ence CM overall. The challenges with dataset #5 are that the changed regions are rather minor, as 
well as the shadowing of the two images. In the land region, LTFL, INLPG, and GBF yield more FPs, 
while IRG-MCS, SCASC, and SRGCAE produce comparatively fewer FPs. The proposed GSGM has 
the fewest FPs and detects the most complete changed regions. The accuracy assessments of the 

Figure 4. ROC curves on (a) dataset #1, (b) dataset #2, (c) dataset #3, (d) dataset #4 and (e) dataset #5.
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comparison methods on multimodal datasets #1–#3 and #4–#5 are shown in Tables 3 and 4 respect
ively, with the greatest accuracy denoted in bold. It is clear that GSGM obtains the highest AUC, 
OA, KC, and F1 values across all multimodal datasets, demonstrating its efficiency in identifying 
changes across multimodal images based on global structural features.

3.4.2. Experiments on unimodal datasets
Four unimodal datasets were used to confirm the effectiveness of the proposed method on unim
odal datasets. The CIMs of different methods on the unimodal datasets are shown in Figure 6. In 
dataset #6, LTFL fails to highlight the changed regions, and GBF highlights the unchanged regions, 
although it also highlights the changed regions. The other comparison methods have lower CI in the 
unchanged regions, but the highlighted changed regions are not internally connected. In dataset #7, 
GBF does not clearly highlight the changed regions, while the other comparison methods only par
tially highlight the changed regions, and only GSGM completely highlights the changed region in 
the upper right corner of the image. Although the other methods could basically highlight the chan
ged regions in datasets #8 and #9, there are some voids inside the changed regions, and GBF fails to 
highlight the changed regions in these datasets. As illustrated in Figure 6 (f1–f4), the changed 
regions can be desirably highlighted by GSGM with the best internal connectivity. Figure 7

Figure 5. CMs of different methods on multimodal datasets: (a1–a5) LTFL; (b1–b5) INLPG; (c1–c5) GBF; (d1–d5) IRG-McS; (e1–e5) 
SCASC; (f1–f5) SRGCAE; (g1–g5) GSGM; (h1–h5) reference CM.
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shows the ROC curves of the CIMs of different methods on the unimodal datasets, where it can be 
seen that the proposed GSGM achieves approximate results with the comparison methods in data
set #7 and optimal ROC curves in datasets #8 and #9.

Figure 8 illustrates the CMs of different methods on the unimodal datasets. Datasets #6 and #7 
reflect the changes caused by urban construction with complex feature types, such as buildings, veg
etation, roads, etc. Visually, in dataset #6, LTFL and INLPG have more FPs, while GBF, IRG-MCS, 
SCASC, and SRGCAE have fewer FPs, but generate a large number of FNs. In dataset #7, GBF, 

Table 4. Quantitative measures of binary CMs on multimodal datasets. The bolded font indicates the highest value.

Methods

Dataset #4 Dataset #5

AUC OA KC F1 AUC OA KC F1

LTFL 0.9322 0.9195 0.6689 0.7145 0.8754 0.8078 0.2849 0.3549
INLPG 0.9121 0.7829 0.4134 0.5162 0.9270 0.9503 0.6128 0.6392
GBF 0.9388 0.8272 0.4827 0.5695 0.6484 0.4667 0.0344 0.1418
IRG-McS 0.9427 0.9358 0.7136 0.7502 0.8883 0.9700 0.7242 0.7401
SCASC 0.9394 0.9503 0.7762 0.8046 0.8889 0.9472 0.5958 0.6238
SRGCAE 0.9266 0.8728 0.5724 0.6400 0.9174 0.9129 0.4737 0.5164
GSGM 0.9806 0.9565 0.7937 0.8184 0.9716 0.9762 0.7860 0.7986

Figure 6. CIMs of different methods on unimodal datasets: (a1–a4) LTFL; (b1–b4) INLPG; (c1–c4) GBF; (d1–d4) IRG-McS; (e1–e4) 
SCASC; (f1–f4) SRGCAE; (g1–g4) GSGM.

Figure 7. ROC curves on (a) dataset #6, (b) dataset #7, (c) dataset #8 and (d) dataset #9.

INTERNATIONAL JOURNAL OF DIGITAL EARTH 17



LTFL, and INLPG have considerable FPs, and IRG-MCS and SCASC have more FNs. In compari
son to these methods, the proposed GSGM has the most comprehensive detection results. The 
difficulty of datasets #8 and #9 lies in the fact that the changed regions are relatively minor and 
there is intense noise in the images. LTFL and GBF do not effectively suppress the image noise, 
and generate more FPs. INLPG, IRG-MCS, SCASC, and SRGCAE overcome the effects of image 
noise to a certain extent, but fail to detect some minor changes. Visually, the proposed GSGM is 
unaffected by image noise and can detect minor changes. Owing to the change metric of the global 
structural features of the image, the CIMs of the proposed GSGM can more accurately distinguish 

Figure 8. CMs of different methods on unimodal datasets: (a1–a4) LTFL; (b1–b4) INLPG; (c1–c4) GBF; (d1–d4) IRG-McS; (e1–e4) 
SCASC; (f1–f4) SRGCAE; (g1–g4) GSGM; (h1–h4) reference CM.

Table 5. Quantitative measures of binary CMs on unimodal datasets. The bolded font indicates the highest value.

Method

Dataset #6 Dataset #7

AUC OA KC F1 AUC OA KC F1

LTFL 0.6520 0.8072 0.3255 0.4413 0.7917 0.9051 0.4092 0.4598
INLPG 0.8166 0.8398 0.4374 0.5335 0.8802 0.8851 0.4500 0.5138
GBF 0.6861 0.8127 0.3707 0.4852 0.7238 0.6240 0.1439 0.2845
IRG-McS 0.8709 0.8697 0.4307 0.4892 0.8757 0.9203 0.4024 0.4365
SCASC 0.8255 0.8659 0.4230 0.4855 0.8182 0.9090 0.3035 0.3407
SRGCAE 0.7787 0.8338 0.3759 0.4724 0.7528 0.8354 0.1958 0.2874
GSGM 0.7725 0.8633 0.5154 0.5971 0.8468 0.9212 0.4929 0.5340

Table 6. Quantitative measures of binary CMs on the unimodal datasets. The bolded font indicates the highest value.

Method

Dataset #8 Dataset #9

AUC OA KC F1 AUC OA KC F1

LTFL 0.8848 0.8774 0.3891 0.4506 0.8894 0.9550 0.6188 0.6428
INLPG 0.9594 0.9583 0.6508 0.6720 0.9498 0.9659 0.6448 0.6621
GBF 0.8615 0.7826 0.2946 0.3789 0.7372 0.6636 0.1185 0.2087
IRG-McS 0.9196 0.9556 0.6305 0.6533 0.9141 0.9591 0.5579 0.5782
SCASC 0.9008 0.9513 0.5881 0.6128 0.8486 0.9528 0.4745 0.4974
SRGCAE 0.8984 0.9350 0.3187 0.3422 0.8708 0.9592 0.5212 0.5399
GSGM 0.9664 0.9603 0.7137 0.7351 0.9689 0.9687 0.7018 0.7183
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the changed and unchanged regions, while the CD result of GSGM is closest to the reference CM. 
From the accuracy evaluation of CMs on the unimodal datasets in Tables 5 and 6, it can be seen that 
the KC and F1 of GSGM are the highest among these five comparison methods, indicating that 
GSGM is applicable not only to MCD, but also to UCD.

To further validate the efficacy of the proposed GSGM on unimodal datasets #6 and #7, we uti
lized two established UCD methods: Change Vector Analysis (CVA) (Bovolo and Bruzzone 2007) 
and Deep Change Vector Analysis (DCVA) (Saha, Bovolo, and Bruzzone 2019). As depicted in 
Figure 9, the results from both datasets show that CMs of CVA are prone to significant salt-and- 
pepper noise, a consequence of its pixel-centric approach to CD. In contrast, DCVA, which incor
porates deep features from the imagery, is more effective at reducing such noise. The precision 
evaluation detailed in Table 7 reveals that DCVA not only surpasses CVA in accuracy but also 
equals the performance of GSGM on dataset #7. However, on dataset #6, DCVA’s performance 
is slightly inferior to GSGM, underscoring the robustness of the proposed GSGM across different 
unimodal datasets.

3.5. Discussion

3.5.1. Experiment setting and parameter analysis
Based on the ROC curves, threshold parameter zis set between 1.3 and 2.0 for all datasets to obtain 
satisfactory CMs. Step coefficient aDv , patch size ws and target patch’s step size Dp are the main par
ameters of GSGM. Step coefficient aDv controls the sparsity of the vertex patches; the greater the 
value of aDv , the more numerous the vertex patches. Considering the accuracy and efficiency of 
the method, this paper fixes aDv to 0.1, and discusses the influence of patch size ws and target patch’s 
step size Dp on the accuracy of GSG.

Figure 9. The first and second rows correspond to the CMs of dataset #6 and dataset #7, respectively. (a1-a2) CVA; (b1-b2) DCVA; 
(c1-c2) GSGM; (d1–d2) reference CM.

Table 7. Quantitative measures of binary CMs on unimodal dataset #6 and dataset #7. The bolded font indicates the highest 
value.

Method

Dataset #6 Dataset #7

OA KC F1 OA KC F1

CVA 0.7650 0.3168 0.4609 0.8558 0.3999 0.4770
DCVA 0.8394 0.4263 0.5224 0.9093 0.4960 0.5464
GSGM 0.8633 0.5154 0.5971 0.9212 0.4929 0.5340
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1) Patch size ws. Weight coefficient l is fixed to 2, and patch size ws is set from 3 to 13 with an 
interval of 2. Figure 10 shows the influence of patch size ws on GSGM. It can be seen that datasets 
#1, #3, #5, #7, #8, and #9 reach the maximum AUC and KC when ws is set to 5, and datasets #2, #4, 
and #6 reach the maximum AUC and KC when ws is set to 9, 11, and 7 respectively. This 
is because datasets #1, #3, #5, #7, #8, and #9 contain relatively small changed regions, so 
the patch size needs to be set smaller to ensure the detection of small changed regions, while 
the changed regions of datasets #2, #4, and #6 are relatively large, so the patch size needs to be 
set larger to ensure the complete detection of changed regions. Therefore, this paper suggests 
that when the changed regions are relatively small, patch size ws should be set to 5, and 
when the changed regions are relatively large, patch size ws should be set to a larger value 
(e.g. 9 or 11).

2) Target patch’s step size Dp. To evaluate the influence of the target patch’s step size Dp on the 
performance of the proposed GSGM, we maintained the patch size ws at a constant value of 5 and 
systematically adjusted Dp from 1 to 5. Figure 11 shows that the GSGM’s accuracy is maintained at a 
high level for Dp values of 1 and 2. However, there is a discernible decrease in accuracy as Dp con
tinues to increase. This decline is attributed to the sparser distribution of image patches and the 
consequent reduction in the robustness of the extracted structural features with larger Dp values. 

Figure 10. Influence of patch size ws on GSGM performance: (a) AUC-ws curves; (b) KC-ws curves.

Figure 11. Influence of target patch’s step size Dp on GSGM performance: (a) AUC-Dp curves; (b) KC-Dp curves.
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On the other hand, a Dp value that is too small leads to an overabundance of image patches, which 
in turn amplifies the computational burden of the algorithm. Given these considerations, this study 
recommends setting Dp equal to (ws − 1)/2, which simplifies the process and optimizes compu
tational efficiency without compromising accuracy.

3) Computation time. To illustrate the computational efficiency of the proposed GSGM, we fix 
the patch size ws at 5, and use datasets #3 and #5, which represent the largest and smallest in 
size, respectively (refer to Table 7). Our implementation of GSGM utilizes MATLAB 2020a on a 
Windows desktop with an AMD Ryzen 7 3800X 8-Core Processor (3.89 GHz) and 64 GB of 
RAM. As demonstrated in Table 8, GSGM’s computational time is inversely proportional to the 
increase in the step size parameter Dp. Figure 11 further confirms that GSGM maintains significant 
accuracy when Dp ranges from 1 to 4. To optimize for reduced computation time without compro
mising accuracy, it is recommended to set a larger Dp value. Moreover, computational efficiency can 
be enhanced by refining the graph construction process, such as improving the efficiency of simi
larity measurements between image patches, or by leveraging parallel computing to distribute tasks 
across multiple cores or nodes.

3.5.2. Ablation study
The proposed GSGM consists of three main tasks: GSG construction, CI measure, and CIMs fusion. 
The effectiveness of the core components of these three tasks (GSG, weight change metrics (WCM), 
and LLRR) will be discussed separately.

Table 8. Computational time (seconds) of the proposed GSGM on datasets #3 and #5 under different values of Dp.

Datasets Size Dp = 1 Dp = 2 Dp = 3 Dp = 4 Dp = 5

Dataset #3 3,500 × 2,000 ×11(3) 10208.53 2550.78 1233.76 831.25 663.65
Dataset #5 300 × 412 × 1(3) 317.23 76.19 36.35 23.12 16.44

Figure 12. Influence of weight coefficient l on GSGM performance; (a) AUC-l curves; (b) KC-l curves.

Table 9. Quantitative measures of different graphs on datasets #1–#9.

GSG #1 #2 #3 #4 #5 #6 #7 #8 #9

AUC 0.9734 0.9233 0.9248 0.9745 0.9703 0.7567 0.7997 0.9031 0.8653
√ 0.9815 0.9339 0.9480 0.9806 0.9716 0.7725 0.8468 0.9664 0.9689

KC 0.7844 0.5672 0.4865 0.7606 0.7569 0.4210 0.4443 0.5446 0.5475
√ 0.7988 0.5715 0.5195 0.7937 0.7860 0.5154 0.4929 0.7137 0.7018
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1) The effectiveness of GSG. To validate the efficacy of the GSG, the top 10% of vertex patches 
most similar to each target patch are utilized to construct the graph, following INLPG (Sun et al. 
2022). The results in Table 9 demonstrate that GSG attained the highest AUC and KC values across 
all datasets, with AUC increasing by 3.58% and KC by 11.79% on average respectively. This proves 
that GSG could better express the structural features of the images.

2) The effectiveness of WCM. Weight coefficient l affects the contribution of each vertex patch 
to the CI of the target patch, and weight coefficient l is set to 0, 0.5, 1, 1.5, 2, 2.5, and 3 respect
ively. For datasets #1, #3, #5, #7, #8, and #9, patch size ws is set to 5, and for datasets #2, #4, and #6, 
patch size ws is set to 9, 11, and 7 respectively. Figure 12 shows the influence of weight coefficient 
l on GSGM. As can be seen from Figure 11, most datasets reach the best AUC and KC values 
when weight coefficient l is 2.0; only some datasets (#1 and #2) achieve the maximum AUC 
and KC values when l is 1.5; and when weight coefficient l is set to 0, all datasets obtain 
lower accuracy. This indicates the effectiveness of the WCM. For simplicity, this paper suggests 
setting weight coefficient l to 2.0.

3) The effectiveness of the CI measure. In this paper, we explored two distinct methods for 
measuring changes: the Intrinsic change of the GSG (referred to as dif 1

(i,j)) and the difference 
between the mapped GSG and the GSG (referred to as dif 2

(i,j)). To assess the individual impacts 
of dif 1

(i,j) and dif 2
(i,j), we conducted two separate experiments, each focusing on one method for ana

lyzing changes in multimodal imagery. The outcomes of these ablation experiments are detailed in 
Table 10. Table 10 reveals that utilizing both dif 1

(i,j) and dif 2
(i,j) together, rather than relying solely on 

either dif 1
(i,j) or dif 2

(i,j), led to a notable enhancement in performance metrics. Specifically, there is an 
average increase of 2.38% and 2.14% of AUC, and 6.67% and 5.3% of KC, respectively. These 
findings suggest that the combined use of GSG’s Intrinsic change and the difference between 
mapped GSG and GSG significantly improves the representation of change information and 
enhances the precision of CD.

4) The effectiveness of LLRR. For CIMs fusion, mean weighted fusion (MWF) and wavelet fusion 
(Pu 2000) are utilized as controls. As evident in Table 11, the proposed GSGM continued to achieve 
optimal results, elevating the AUC values by 2.80% and 1.63% while improving KC values by 4.56% 
and 4.37% over MWF and WF respectively. These findings validate that the proposed method can 
effectively enhance the representation of change information and improve detection accuracy 
through fusing the low-rank and significance components of the CIMs.

Table 10. Effectiveness of CI measurement.

dif 1
(i,j) dif 2

(i,j) #1 #2 #3 #4 #5 #6 #7 #8 #9

AUC √ 0.9603 0.9126 0.9046 0.9601 0.9585 0.7412 0.8253 0.9624 0.9548
√ 0.9688 0.9235 0.8998 0.9652 0.9692 0.7510 0.8163 0.9643 0.9606
√ √ 0.9815 0.9339 0.9480 0.9806 0.9716 0.7725 0.8468 0.9664 0.9689

KC √ 0.7619 0.5211 0.4788 0.7512 0.7583 0.4723 0.4615 0.6989 0.6812
√ 0.7694 0.5488 0.4756 0.7567 0.7821 0.4812 0.4527 0.7001 0.6885
√ √ 0.7988 0.5715 0.5195 0.7937 0.7860 0.5154 0.4929 0.7137 0.7018

Table 11. Quantitative measures of different DIs fusion methods on datasets #1–#9.

MWF WF LLRR #1 #2 #3 #4 #5 #6 #7 #8 #9

AUC √ 0.9708 0.9209 0.8932 0.9716 0.9559 0.7581 0.8304 0.9658 0.9678
√ 0.9709 0.9215 0.8971 0.9718 0.9558 0.7583 0.8306 0.9659 0.9680

√ 0.9815 0.9339 0.9480 0.9806 0.9716 0.7725 0.8468 0.9664 0.9689
KC √ 0.7972 0.5207 0.4924 0.7676 0.7626 0.4602 0.4797 0.7068 0.6788

√ 0.7976 0.5208 0.4964 0.7682 0.7627 0.4611 0.4804 0.7080 0.6798
√ 0.7988 0.5715 0.5195 0.7937 0.7860 0.5154 0.4929 0.7137 0.7018
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4. Conclusion

In order to address the issue of ‘incomparability’ caused by the large imaging differences of multi
modal images, this paper proposes a global structure graph mapping (GSGM)-based MCD method. 
GSGM constructs the GSGs of multimodal images to represent the structural information, then 
compares them by cross-mapping the GSGs into the same image domain. A new weighted change 
metric formula is built to obtain robust change information, the forward and backward CIMs are 
fused using low-rank representation to obtain a robust CIM, and the CM are obtained through 
threshold segmentation. Experiments on five multimodal datasets and four unimodal datasets 
demonstrate the superiority and robustness of the proposed method.

The proposed GSGM has certain limitations. Specifically, there is room for the enrichment and 
diversification of the data types currently used. Furthermore, the method’s detection accuracy 
requires further improvement, especially for complex change scenes (such as datasets #3 and 
#6). In future research, we will focus on developing the diversity of evaluated datasets to enhance 
the CD capabilities across various image types. For example, we will continue to consider the polar
ization mode and image quality of SAR imagery (including scalloping and speckle effects), and their 
impact on image structural features. Building upon this, we will take into account the physical 
characteristics of SAR imagery to enhance its applicability to MCD tasks within complex scenarios. 
In order to further reduce the impact of imaging conditions (such as atmospheric effects, thermal 
noise, and illumination) on the quality of remote sensing images, and to enhance the accuracy of 
constructing GSGs, we will consider further improvements in the quality of remote sensing images 
in future research (such as spectral calibration for hyperspectral imagery (Hong et al. 2019)). Mean
while, refining graph construction to improve the representation of structural image features also 
holds promise for strengthening the method’s versatility.
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